Парадоксы теории множеств и их философская интерпретация.

Теория нечетких множеств представлена в разделе прикладной математики, который посвящен методам проведения анализа неопределенных данных, описывающих неопределенности реальных событий и процессов с использованием понятий о множествах без четких границ.

Классическая теория множеств определяет принадлежность конкретного элемента определенной совокупности. При этом под принадлежностью принимаются понятия в бинарном выражении, т.е. присутствует четкое условие: рассматриваемый элемент или принадлежит, или не принадлежит множеству.

Теория множеств относительно нечеткости предусматривает градуированное понимание принадлежности рассматриваемого элемента конкретному множеству, а степень его принадлежности подлежит описанию с помощью соответствующей функции. Другими словами, переход от принадлежности заданному множеству некоторых элементов к непринадлежности происходит не резко, а постепенно с использованием вероятностного подхода.

Достаточный опыт зарубежных и отечественных исследователей свидетельствует о ненадежности и неадекватности вероятностного подхода, используемого в качестве инструмента решения задач слабоструктурированного типа. Использование методов статистики при решении такого типа задач приводит к существенному искажению исходной постановки задачи. Именно недостатки и ограничения, связанные с применением классических методов решения задач слабоструктурированной формы, являются следствием «принципа несовместимости», который сформулирован в теории нечетких множеств, разработанной Л.А. Заде.

Поэтому некоторые зарубежные и отечественные исследователи разработали методы оценивания проектов и эффективности с использованием инструментов теории нечетких множеств. В них на замену метода распределения вероятностей пришло распределение возможностей, которое описывается функцией принадлежности числа нечеткого типа.

Основы теории множеств базируются на инструментах, которые имеют отношение к в неопределенных условиях. При их использовании предполагается формализация исходных параметров и показателей эффективности в качестве вектора нечеткого интервала (интервальных значений). Попадание в каждый такой интервал может быть охарактеризован степенью неопределенности.

Используя арифметику при работе с такими нечеткими интервалами, экспертами может быть получен в результате нечеткий интервал для конкретного целевого показателя. Основываясь на исходной информации, опыте и интуиции, эксперты могут дать качественную и количественную характеристики границ (интервалов) возможных значений области и параметров их возможных значений.

Теория множеств может быть активно использована на практике и в системами, в финансах и экономике для решения задач при условии неопределенности основных показателей. Например, такая техника, как фотоаппараты и некоторые стиральные машины, оборудована нечеткими контроллерами.

В математике теория множеств, предложенная Л.А. Заде, позволяет описать нечеткие знания и понятия, оперировать ими и делать нечеткие выводы. Благодаря основанным на данной теории методам построения нечетких систем с помощью компьютерных технологий значительно расширяются компьютеров. В последнее время управление нечеткими множествами является одной из результативных областей исследований. Полезность нечеткого управления проявляется в определенной сложности технологических процессов с позиции анализа с использованием количественных методов. Также управление нечеткими множествами применяется при качественной интерпретации различных источников информации.

Содержание статьи

МНОЖЕСТВ ТЕОРИЯ. Под множеством понимается совокупность каких-либо объектов, называемых элементами множества. Теория множеств занимается изучением свойств как произвольных множеств, так и множеств специального вида независимо от природы образующих их элементов. Терминология и многие результаты этой теории широко используются в математике, например в математическом анализе, геометрии и теории вероятностей.

Терминология.

Если каждый элемент множества B является элементом множества A , то множество B называется подмножеством множества A . Например, если множество A состоит из чисел 1, 2 и 3, то у него существует 8 подмножеств (три из них содержат по 1 элементу, три – содержат по 2 элемента, одно подмножество, по определению, есть само множество A и восьмое подмножество – это пустое множество, не содержащее ни одного элемента). Запись x О A означает, что x – элемент множества A , а B М A – что B является подмножеством множества A . Если универсальное множество, из которого мы берем элементы всех множеств, обозначить через I , то элементы, принадлежащие I , но не входящие в A , образуют множество, называемое дополнением множества A и обозначаемое C (A ) или A ў. Множество, не содержащее ни одного элемента, называется пустым множеством.

Над множествами можно производить операции, напоминающие операции, производимые в арифметике над числами. Объединением A B множеств A и B называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A и B (элемент, принадлежащий множествам A и B одновременно засчитывается при включении в A B только один раз). Пересечением A B множеств A и B называется множество, состоящее из всех элементов, принадлежащих как A , так и B . Предположим, например, что множество I состоит из всех букв русского алфавита, A – из всех согласных, а множество B – из букв, встречающихся в слове «энциклопедия». Тогда объединение A B состоит из всех букв алфавита, кроме а , ё , у , ъ , ь , ы , ю , пересечение A B – из букв д , к , л , н , п , ц , а дополнение C (A ) – из всех гласных. Раздел теории множеств, который занимается исследованием операций над множествами, называется алгеброй множеств. Пустое множество играет в алгебре множеств роль нуля, и поэтому его часто обозначают символом О ; например, A O = A , A O = O .

Булева алгебра.

Алгебра множеств является подразделом булевых алгебр, впервые возникших в трудах Дж.Буля (1815–1864). В аксиомах булевой алгебры отражена аналогия между понятиями «множества», «событие» и «высказывания». Логические высказывания можно записать с помощью множеств и проанализировать с помощью булевой алгебры.

Даже не вдаваясь в детальное изучение законов булевой алгебры, мы можем получить представление о том, как она используется на примере одной из логических задач Льюиса Кэрролла. Пусть у нас имеется некоторый набор утверждений:

2831. Не бывает котенка, который любит рыбу и которого нельзя научить всяким забавным штукам;

2. Не бывает котенка без хвоста, который будет играть с гориллой;

3. Котята с усами всегда любят рыбу;

4. Не бывает котенка с зелеными глазами, которого можно научить забавным штукам;

5. Не бывает котят с хвостами, но без усов.

Какое заключение можно вывести из этих утверждений?

Рассмотрим следующие множества (универсальное множество I включает в себя всех котят): A – котята, любящие рыбу; B – котята, обучаемые забавным штукам; D – котята с хвостами; E – котята, которые будут играть с гориллой; F – котята с зелеными глазами и G – котята с усами. Первое утверждение гласит, что множество котят, которые любят рыбу, и дополнение множества котят, обучаемых забавным штукам, не имеют общих элементов. Символически это записывается как


Понятие множества является исходным не определяемым строго понятием. Приведем здесь определение множества (точнее, пояснение идеи множества), принадлежащее Г. Кантору: "Под многообразием или множеством я понимаю вообще все многое, которое возможно мыслить как единое, т.е. такую совокупность определенных элементов, которая посредством одного закона может быть соединена в одно целое".


Множества будем, как правило, обозначать большими буквами латинского алфавита, а их элементы - малыми, хотя иногда от этого соглашения придется отступать, так как элементами некоторого множества могут быть другие множества. Тот факт, что элемент а принадлежит множеству A , записывается в виде a\in A .


В математике мы имеем дело с самыми различными множествами. Для элементов этих множеств мы используем два основных вида обозначений: константы и переменные.


Индивидная константа (или просто константа) с областью значений A обозначает фиксированный элемент множества A . Таковы, например, обозначения (записи в определенной системе счисления) действительных чисел: 0;\,2;\,7,\!34 . Для двух констант b и b с областью значений A будем писать a=b , понимая под этим совпадение обозначаемых ими элементов множества A .


Индивидное переменное (или просто переменное) с областью значений A обозначает произвольный, заранее не определенный элемент множества A . При этом говорят, что переменное x пробегает множество A или переменное x принимает произвольные значения на множестве A . Можно фиксировать значение переменного x , записав x=a , где a - константа с той же областью значений, что и x . В этом случае говорят, что вместо переменного x подставлено его конкретное значение a , или произведена подстановка a вместо x , или переменное x приняло значение a .


Равенство переменных x=y понимается так: всякий раз, когда переменное x принимает произвольное значение a , переменное y принимает то же самое значение a , и наоборот. Таким образом, равные переменные "синхронно" принимают всегда одни и те же значения.


Обычно константы и переменные, область значений которых есть некоторое числовое множество, а именно одно из множеств \mathbb{N},\, \mathbb{Z},\, \mathbb{Q},\, \mathbb{R} и \mathbb{C} , называют соответственно натуральными, целыми (или целочисленными), рациональными, действительными и комплексными константами и переменными. В курсе дискретной математики мы будем использовать различные константы и переменные, область значений которых не всегда является числовым множеством.


Для сокращения записи мы будем пользоваться логической символикой, позволяющей коротко, наподобие формул, записывать высказывания. Понятие высказывания не определяется. Указывается только, что всякое высказывание может быть истинным или ложным (разумеется, не одновременно!).

Логические операции (связки) над множествами

Для образования из уже имеющихся высказываний новых высказываний используются следующие логические операции (или логические связки).


1. Дизъюнкция \lor : высказывание P\lor Q (читается: "P или Q ") истинно тогда и только тогда, когда истинно хотя бы одно из высказываний P и Q .


2. Конъюнкция \land : высказывание P\land Q (читается: "P и Q ") истинно тогда и только тогда, когда истинны оба высказывания P и Q .


3. Отрицание \lnot : высказывание \lnot P (читается: "не P ") истинно тогда и только тогда, когда P ложно.


4. Импликация \Rightarrow : высказывание P \Rightarrow Q (читается: "если P , то Q " или "P влечет Q ") истинно тогда и только тогда, когда истинно высказывание или оба высказывания ложны.


5. Эквивалентность (или равносильность) \Leftrightarrow : высказывание (читается: "P , если и только если Q ") истинно тогда и только тогда, когда оба высказывания P и Q либо одновременно истинны, либо одновременно ложны. Любые два высказывания P и Q , такие, что истинно P \Leftrightarrow Q , называют логически эквивалентными или равносильными.


Записывая высказывания с помощью логических операций, мы предполагаем, что очередность выполнения всех операций определяется расстановкой скобок. Для упрощения записи скобки зачастую опускают, принимая при этом определенный порядок выполнения операций ("соглашение о приоритетах").


Операция отрицания всегда выполняется первой, и потому ее в скобки не заключают. Второй выполняется операция конъюнкции, затем дизъюнкции и, наконец, импликации и эквивалентности. Например, высказывание (\lnot P)\lor Q записывают так: \lnot P\lor Q . Это высказывание есть дизъюнкция двух высказываний: первое является отрицанием P , а второе - Q . В отличие от него высказывание \lnot (P\lor Q) есть отрицание дизъюнкции высказываний P и Q .


Например, высказывание \lnot P\land Q\lor\lnot Q\land P \Rightarrow\lnot Q после расстановки скобок в соответствии с приоритетами примет вид


\bigl(((\lnot P)\land Q)\lor ((\lnot Q)\land P)\bigr)\Rightarrow (\lnot Q).


Сделаем некоторые комментарии по поводу введенных выше логических связок. Содержательная трактовка дизъюнкции, конъюнкции и отрицания не нуждается в специальных разъяснениях. Импликация P \Rightarrow Q истинна, по определению, всякий раз, когда истинно высказывание Q (независимо от истинности P ) или P и Q одновременно ложны. Таким образом, если импликация P\Rightarrow Q истинна, то при истинности P имеет место истинность Q , но обратное может и не выполняться, т.е. при ложности P высказывание Q может быть как истинным, так и ложным. Это и мотивирует прочтение импликации в виде "если P , то Q ". Нетрудно также понять, что высказывание P\Rightarrow Q равносильно высказыванию \lnot P\lor Q и тем самым содержательно "если P , то Q " отождествляется с "не P или Q ".


Равносильность \Leftrightarrow есть не что иное, как "двусторонняя импликация", т.е. P\Leftrightarrow Q равносильно (P \Rightarrow Q)\land (Q \Rightarrow P) . Это означает, что из истинности P следует истинность Q и, наоборот, из истинности Q следует истинность P .

Пример 1.1. Для определения истинности или ложности сложного высказывания в зависимости от истинности или ложности входящих в него высказываний используют таблицы истинности.


В первых двух столбцах таблицы записывают все возможные наборы значений, которые могут принимать высказывания P и Q . Истинность высказывания обозначают буквой "И" или цифрой 1, а ложность - буквой "Л" или цифрой 0. Остальные столбцы заполняют слева направо. Так для каждого набора значений P и Q находят соответствующие значения высказываний.


Наиболее простой вид имеют таблицы истинности логических операций (табл. 1.1-1.5).


Рассмотрим сложное высказывание (\lnot P\land Q)\Rightarrow (\lnot Q\land P) . Для удобства вычислений обозначим высказывание \lnot P\land Q через A , высказывание \lnot Q\land P через B , а исходное высказывание запишем в виде A \Rightarrow B . Таблица истинности этого высказывания состоит из столбцов P,\,Q,\,A,\,B и A \Rightarrow B (табл. 1.6).

Предикаты и кванторы

Сложные высказывания образуются не только посредством логических связок, но и с помощью предикатов и кванторов.


Предикат есть высказывание, содержащее одно или несколько индивидных переменных. Например, "x есть четное число" или "x есть студент МГТУ им. Баумана, поступивший в 1999 г.". В первом предикате x есть целочисленное переменное, во втором - переменное, пробегающее множество "человеческих индивидов". Примером предиката, содержащего несколько индивидных переменных, может служить: "x есть сын y ", "x,y и z учатся в одной и той же группе", "x делится на y ", "x меньше y " и т.п. Предикаты будем записывать в виде P(x),\, Q(x,y),\, R(x,y,z) , полагая, что в скобках перечислены все переменные, входящие в данный предикат.


Подставляя вместо каждого переменного, входящего в предикат P(x_1,\ldots,x_n) , конкретное значение, т.е. фиксируя значения , где a_1,\ldots,a_n - некоторые константы с соответствующей областью значений, получаем высказывание, не содержащее переменных. Например, "2 есть четное число", "Исаак Ньютон есть студент МГТУ им. Баумана, поступивший в 1999 г.", "Иванов есть сын Петрова", "5 делится на 7" и т.п. В зависимости от того, истинно или ложно полученное таким образом высказывание, говорят, что предикат P выполняется или не выполняется на наборе значений переменных x_1=a_1,\ldots,x_n=a_n . Предикат, выполняющийся на любом наборе входящих в него переменных, называют тождественно истинным, а предикат, не выполняющийся ни на одном наборе значений входящих в него переменных, - тождественно ложным.


Высказывание из предиката можно получать не только подстановкой значений его переменных, но и посредством кванторов. Вводят два квантора - существования и всеобщности, обозначаемые \exists и \forall соответственно.


Высказывание (\forall x\in A)P(x) ("для каждого элемента x , принадлежащего множеству A , истинно P(x) ", или, более коротко, "для всех x\in A истинно P(x) ") истинно, по определению, тогда и только тогда, когда предикат P(x) выполняется для каждого значения переменного x .


Высказывание (\exists x\in A)P(x) ("существует, или найдется, такой элемент x множества A , что истинно P(x) ", также "для некоторого x\in A истинно P(x) ") истинно, по определению, тогда и только тогда, когда на некоторых значениях переменного x выполняется предикат P(x) .

Связывание переменных предикатов кванторами

При образовании высказывания из предиката посредством квантора говорят, что переменное предиката связывается квантором. Аналогично связываются переменные в предикатах, содержащих несколько переменных. В общем случае используют формы высказываний вида


(Q_1x_1\in A_1)(Q_2x_2\in A_2)\ldots (Q_nx_n\in A_n) P(x_1,x_2, \ldots, x_n),


где вместо каждой буквы Q с индексом может быть подставлен любой из кванторов \forall или \exists .


Например, высказывание (\forall x\in A)(\exists y\in B)P(x,y) читается так: "для всякого x\in A существует y\in B , такой, что истинно P(x,y) ". Если множества, которые пробегают переменные предикатов, фиксированы (подразумеваются "по умолчанию"), то кванторы записываются в сокращенной форме: (\forall x)P(x) или (\exists x)P(x) .


Заметим, что многие математические теоремы можно записать в форме, подобной только что приведенным высказываниям с кванторами, например: "для всех f и для всех a истинно: если f - функция, дифференцируемая в точке a , то функция f непрерывна в точке a ".

Способы задания множеств

Обсудив особенности употребления логической символики, вернемся к рассмотрению множеств.


Два множества A и B считают равными, если любой элемент x множества A является элементом множества B и наоборот. Из приведенного определения равных множеств следует, что множество полностью определяется своими элементами.


Рассмотрим способы задания конкретных множеств. Для конечного множества, число элементов которого относительно невелико, может быть использован способ непосредственного перечисления элементов. Элементы конечного множества перечисляют в фигурных скобках в произвольном фиксированном порядке \{1;3;5\} . Подчеркнем, что поскольку множество полностью определено своими элементами, то при задании конечного множества порядок, в котором перечислены его элементы, не имеет значения. Поэтому записи \{1;3;5\},\, \{3;1;5\},\, \{5;3;1\} и т.д. все задают одно и то же множество. Кроме того, иногда в записи множеств используют повторения элементов. Будем считать, что запись \{1;3;3;5;5\} задает то же самое множество, что и запись \{1;3;5\} .


В общем случае для конечного множества используют форму записи . Как правило, при этом избегают повторений элементов. Тогда конечное множество, заданное записью \{a_1,\ldots,a_n\} , состоит из n элементов. Его называют также n-элементным множеством.


Однако способ задания множества путем непосредственного перечисления его элементов применим в весьма узком диапазоне конечных множеств. Наиболее общим способом задания конкретных множеств является указание некоторого свойства, которым должны обладать все элементы описываемого множества, и только они.


Эта идея реализуется следующим образом. Пусть переменное x пробегает некоторое множество U , называемое универсальным множеством. Мы предполагаем, что рассматриваются только такие множества, элементы которых являются и элементами множества U . В таком случае свойство, которым обладают исключительно элементы данного множества A , может быть выражено посредством предиката P(x) , выполняющегося тогда и только тогда, когда переменное x принимает произвольное значение из множества A . Иначе говоря, P(x) истинно тогда и только тогда, когда вместо x подставляется индивидная константа a\in A .


Предикат P называют в этом случае характеристическим предикатом множества A , а свойство, выражаемое с помощью этого предиката, - характеристическим свойством или коллективизирующим свойством.


Множество, заданное через характеристический предикат, записывается в следующей форме:


A=\bigl\{x\colon~ P(x)\bigr\}.


Например, A=\{x\in\mathbb{N}\colon\, 2x\} означает, что "A есть множество, состоящее из всех таких элементов x , что каждое из них есть четное натуральное число".


Термин "коллективизирующее свойство" мотивирован тем, что это свойство позволяет собрать разрозненные элементы в единое целое. Так, свойство, определяющее множество G (см. ниже), в буквальном смысле слова формирует некий "коллектив":



Если мы вернемся к канторовскому определению множества, то характеристический предикат множества и есть тот закон, посредством которого совокупность элементов соединяется в единое целое. Предикат, задающий коллективизирующее свойство, может быть тождественно ложным. Множество, определенное таким образом, не будет иметь ни одного элемента. Его называют пустым множеством и обозначают \varnothing .


В противоположность этому тождественно истинный характеристический предикат задает универсальное множество.


Обратим внимание на то, что не каждый предикат выражает какое-то коллективизирующее свойство.


Замечание 1.1. Конкретное содержание понятия универсального множества определяется тем конкретным контекстом, в котором мы применяем теоретико-множественные идеи. Например, если мы занимаемся только различными числовыми множествами, то в качестве универсального может фигурировать множество \mathbb{R} всех действительных чисел. В каждом разделе математики рассматривается относительно ограниченный набор множеств. Поэтому удобно полагать, что элементы каждого из этих множеств суть также и элементы некоторого "объемлющего" их универсального множества. Зафиксировав универсальное множество, мы тем самым фиксируем область значений всех фигурирующих в наших математических рассуждениях переменных и констант. В этом случае как раз и можно не указывать в кванторах то множество, которое пробегает связываемое квантором переменное. В дальнейшем изложении мы встретимся с разными примерами конкретных универсальных множеств.

Наивная теория множеств

До второй половины XIX-го века понятие «множества» не рассматривалось в качестве математического («множество книг на полке», «множество человеческих добродетелей» и т. д. - всё это чисто бытовые обороты речи). Положение изменилось, когда немецкий математик разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» - который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым . При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre ).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением , полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее - дело рук человеческих»). Тем не менее, некоторые другие математики - в частности, и - поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык.

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной. А именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам , может быть «доказано» абсолютно любое утверждение!). Антиномии ознаменовали собой полный провал программы Кантора.

Аксиоматическая теория множеств

Особенностью аксиоматического подхода является отказ от, лежащего в основе программы Кантора, представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику, лишённой всякого содержания, игрой в символы. В частности, писал, что «мощность континуума, если только мыслить его как множество точек, есть единая некая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы , или же её отрицание.

В настоящее время наиболее распространённой аксиоматической теорией множеств является ZFC - теория Цермело-Френкеля с

История

Наивная теория множеств

Первый набросок теории множеств принадлежит Бернарду Больцано («Парадоксы бесконечного», 1850). В этой работе рассматриваются произвольные (числовые) множества, и для их сравнения определено понятие взаимно-однозначного соответствия .

В 1870 году немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Этот подход изложен в двух его статьях, опубликованных в 1879-1897 годах в известном немецком журнале «Математические анналы» (нем. «Mathematische Annalen» ). Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» - который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано . При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre ).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер , полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее - дело рук человеческих»). Полностью отвергли теорию множеств и такие авторитетные математики, как Герман Шварц и Анри Пуанкаре . Тем не менее, другие крупные математики - в частности, Готлоб Фреге , Рихард Дедекинд и Давид Гильберт - поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык. В частности, теория множеств стала фундаментом теории меры и интеграла , топологии и функционального анализа .

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с бесконечными множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной (см. Кризис математических основ). А именно, был обнаружен ряд теоретико-множественных антиномий : оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний , может быть «доказано» абсолютно любое утверждение).

Аксиоматическая теория множеств

Особенностью аксиоматического подхода является отказ от лежащего в основе программы Кантора представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику лишённой всякого содержания игрой в символы. В частности, Н. Н. Лузин писал, что «мощность континуума, если только мыслить его как множество точек, есть единая некая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы континуум-гипотеза , или же её отрицание.

В настоящее время наиболее распространённой аксиоматической теорией множеств является ZFC - теория Цермело - Френкеля с аксиомой выбора . Вопрос о непротиворечивости этой теории (а тем более - о существовании модели для неё) остаётся нерешённым.

Не всеми математиками аксиома выбора принимается безоговорочно. Так, например Эмиль Борель и Анри Лебег считают, что доказательства, полученные при помощи этой аксиомы, имеют другую познавательную ценность, чем доказательства, независимые от неё. Другие же математики, такие как Феликс Хаусдорф и Адольф Френкель, принимают аксиому выбора безоговорочно, признавая за ней ту же степень очевидности, что и за другими аксиомами Цермело - Френкеля.

Основные понятия

В основе теории множеств лежат первичные понятия: множество и отношение быть элементом множества (обозначается как - «x есть элемент множества A», «x принадлежит множеству A»). Среди производных понятий наиболее важны следующие:

  • пустое множество , обычно обозначается символом ;
  • семейство множеств;
  • операции:

    Для множеств определены следующие бинарные отношения :

    • править] Расширения

      Основная статья: Теория комплектов

      Теория комплектов - естественное расширение (обобщение) теории множеств. Подобно множеству, комплект - набор элементов из некоторой области. Отличие от множества: комплекты допускают присутствие нескольких экземпляров одного и того же элемента (элемент входит от нуль раз, то есть, не входит в комплект, до любого заданного числа раз) . (см. например, Мультисочетания).

      Приложения

      См. также

      Примечания

      Литература

      • К. Куратовский , А. Мостовский Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. - М .: Мир, 1970. - 416 с.
      • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.
      • А. Френкель, И. Бар-Хиллел Основания теории множеств / Перевод с английского Ю. А. Гастева под редакцией А. С. Есенина-Вольпина . - М .: Мир, 1966. - 556 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Теория множеств" в других словарях:

    ТЕОРИЯ МНОЖЕСТВ, раздел математики, начало которому было положено работами Джорджа БУЛЯ в области математической логики, но в настоящее время больше связанный с изучением МНОЖЕСТВ абстрактных или реальных объектов, а не с логическими… … Научно-технический энциклопедический словарь

    теория множеств - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN set theory … Справочник технического переводчика

    Теория, в к рой изучаются множества (классы) элементов произвольной природы. Созданная прежде всего трудами Кантора (а также Р. Дедекинда и К. Вейерштрасса), Т. м. к концу 19 в. стала основой построения сложившихся к тому времени математич.… … Философская энциклопедия

    ТЕОРИЯ МНОЖЕСТВ - раздел математики, исследующий общие свойства множеств. Множеством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли. В Т. м. изучаются общие свойства различных операций… … Энциклопедический словарь по психологии и педагогике

    - … Википедия

    - … Википедия

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то