Температура как мера средней кинетической энергии молекул.

Представляет собой ту энергию, которая определяется скоростью движения различных точек, принадлежащих этой системе. При этом следует различать энергию, которая характеризует поступательное движение и движение вращательное. При этом, средняя кинетическая энергия - это средняя разность между совокупной энергией всей системы и ее энергией покоя, то есть, в сущности, ее величина является средней величиной

Ее физическая величина определяется по формуле 3 / 2 кТ, в которой обозначены: Т - температура, k - константа Больцмана. Эта величина может служить своеобразным критерием для сравнения (эталоном) для энергий, заключенных в различных типах теплового движения. К примеру, средняя кинетическая энергия для молекул газа при исследовании поступательного движения, равна 17 (- 10) нДж при температуре газа 500 С. Как правило, наибольшей энергией при поступательном движении обладают электроны, а вот энергия нейтральных атомов и ионов и значительно меньше.

Данная величина, если мы рассматриваем любой раствор, газ или жидкость, находящуюся при данной температуре, имеет постоянное значение. Такое утверждение справедливо и для коллоидных растворов.

Несколько иначе обстоит дело с твердыми веществами. В этих веществах средняя кинетическая энергия любой частицы слишком мала для того, чтобы преодолеть силы молекулярного притяжения, а потому она может только совершать движение вокруг некой точки, которая условно фиксирует определенное равновесное положение частицы на протяжении длительного отрезка времени. Это свойство и позволяет твердому веществу быть достаточно устойчивым по форме и объему.

Если мы рассматриваем условия: поступательное движение и то здесь средняя кинетическая энергия не является величиной, зависимой от а потому определяется как значение, прямо пропорциональное значению

Все эти суждения мы привели с той целью, чтобы показать, что они справедливы для всех типов агрегатных состояний вещества - в любом из них температура выступает в качестве основной характеристики, отражающей динамику и интенсивность теплового движения элементов. А в этом состоит сущность молекулярно-кинетической теории и содержание понятия теплового равновесия.

Как известно, если два физических тела приходят во взаимодействие друг с другом, то между ними возникает процесс теплообмена. Если же тело представляет собой замкнутую систему, то есть не взаимодействует ни с какими телами, то его теплообменный процесс будет длиться столько времени, сколько потребуется для выравнивания температур этого тела и окружающей среды. Такое состояние называют термодинамическим равновесием. Этот вывод многократно был подтвержден результатами экспериментов. Чтобы определить среднюю кинетическую энергию, следует обратиться к характеристикам температуры данного тела и его теплообменных свойств.

Важно также учитывать, что микропроцессы внутри тел не заканчиваются и тогда, когда тело вступает в термодинамическое равновесие. В этом состоянии внутри тел происходит перемещение молекул, изменение их скоростей, удары и столкновения. Поэтому выполняется только одно из нескольких наших утверждений - объем тела, давление (если речь идет о газе), могут различаться, но вот температура все равно будет оставаться величиной постоянной. Этим еще раз подтверждается утверждение, что средняя кинетическая энергия теплового движения в определяется исключительно показателем температуры.

Эту закономерность установил в ходе опытов Ж. Шарль в 1787 году. Проводя опыты, он заметил, что при нагреве тел (газов) на одинаковую величину, давление их меняется в соответствии с прямо пропорциональным законом. Это наблюдение дало возможность создать много полезных приборов и вещей, в частности - газовый термометр.

  • Из основного уравнения молекулярно-кинетической теории газа вытекает важное следствие: температура есть мера средней кинетической энергии молекул. Докажем это.

Для простоты будем считать количество газа равным 1 моль. Молярный объем газа обозначим через V M . Произведение молярного объема на концентрацию молекул представляет собой постоянную Авогадро N A , т. е. число молекул в 1 моль.

Умножим обе части уравнения (4.4.10) на молярный объем V M и учтем, что nV M = N A . Тогда

Формула (4.5.1) устанавливает связь макроскопических параметров - давления р и объема V M - со средней кинетической энергией поступательного движения молекул.

Вместе с тем полученное опытным путем уравнение состояния идеального газа для 1 моль имеет вид

Левые части уравнений (4.5.1) и (4.5.2) одинаковы, значит, должны быть равны и их правые части, т.е.

Отсюда вытекает связь между средней кинетической энергией поступательного движения молекул и температурой:

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре. Чем выше температура, тем быстрее движутся молекулы.

Соотношение между температурой и средней кинетической энергией поступательного движения молекул (4.5.3) установлено для разреженных газов. Однако оно оказывается справедливым для любых веществ, движение атомов или молекул которых подчиняется законам механики Ньютона. Оно верно для жидкостей, а также для твердых тел, у которых атомы могут лишь колебаться возле положений равновесия в узлах кристаллической решетки.

При приближении температуры к абсолютному нулю энергия теплового движения молекул также приближается к нулю(1).

Постоянная Больцмана

В уравнение (4.5.3) входит отношение универсальной газовой постоянной R к постоянной Авогадро N А. Это отношение одинаково для всех веществ. Оно называется постоянной Больцмана, в честь Л. Больцмана, одного из основателей молекулярно-кинетической теории.

Больцман Людвиг (1844-1906) - великий австрийский физик, один из основоположников молекулярно-кинетической теории. В трудах Больцмана молекулярно-кинетическая теория впервые предстала как логически стройная, последовательная физическая теория. Больцман дал статистическое истолкование второго закона термодинамики. Им много сделано для развития и популяризации теории электромагнитного поля Максвелла. Борец по натуре, Больцман страстно отстаивал необходимость молекулярного истолкования тепловых явлений и принял на себя основную тяжесть борьбы с учеными, отрицавшими существование молекул.

Постоянная Больцмана равна

Уравнение (4.5.3) с учетом постоянной Больцмана записывается так:

Физический смысл постоянной Больцмана

Исторически температура была впервые введена как термодинамическая величина, и для нее была установлена единица измерения - градус (см. § 3.2). После установления связи температуры со средней кинетической энергией молекул стало очевидным, что температуру можно определять как среднюю кинетическую энергию молекул и выражать ее в джоулях или эргах, т. е. вместо величины Т ввести величину Т * так, чтобы

Определенная таким образом температура связана с температурой, выражаемой в градусах, следующим образом:

Поэтому постоянную Больцмана можно рассматривать как величину, связывающую температуру, выражаемую в энергетических единицах, с температурой, выраженной в градусах.

Зависимость давления газа от концентрации его молекул и температуры

Выразив из соотношения (4.5.5) и подставив в формулу (4.4.10), получим выражение, показывающее зависимость давления газа от концентрации молекул и температуры:

Из формулы (4.5.6) вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же.

Отсюда следует закон Авогадро: в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Средняя кинетическая энергия поступательного движения молекул прямо пропорциональна абсолютной температуре. Коэффициент пропорциональности - постоянную Болъцмана k ≈ 10 23 Дж/К - надо запомнить.

(1) При очень низких температурах (вблизи абсолютного нуля) движение атомов и молекул уже не подчиняется законам Ньютона. Согласно более точным законам движения микрочастиц - законам квантовой механики - абсолютный нуль соответствует минимальному значению энергии движения, а не полному прекращению какого-либо движения вообще.

Температура.

Основное уравнение молекулярно-кинетической теории для идеального газа устанавливает связь легко измеряемого макроскопического параметра - давления - с такими микроскопическими параметрами газа, как средняя кинетическая энергия и концентрация молекул.

Но, измерив только давление газа, мы не можем узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентрацию. Следовательно, для нахождения микроскопических параметров газа нужны измерения еще какой-то физической величины, связанной со

средней кинетической энергией молекул. Такой величиной в физике является температура.

Из повседневного опыта каждый знает, что бывают тела горячие и холодные. При контакте двух тел, из которых одно мы воспринимаем как горячее, а другое - как холодное, происходят изменения физических параметров как первого, так и второго тела. Например, твердые и жидкие тела обычно при нагревании расширяются. Через некоторое время после установления контакта между телами изменения макроскопических параметров тел прекращаются. Такое состояние тел называется тепловым равновесием. Физический параметр, одинаковый во всех частях системы тел, находящихся в состоянии теплового равновесия, называется температурой тела. Если при контакте двух тел никакие их физические параметры, например объем, давление, не изменяются, то между телами нет теплопередачи и температура тел одинакова.

Термометры.

В повседневной практике наиболее распространен способ измерения температуры с помощью жидкостного термометра.

В устройстве жидкостного термометра используется свойство расширения жидкостей при нагревании. В качестве рабочего тела обычно применяется ртуть, спирт, глицерин. Чтобы измерить температуру тела, термометр приводят в контакт с этим телом; между телом и термометром будет осуществляться теплопередача до установления теплового равновесия. Масса термометра должна быть значительно меньше массы тела, так как в противном случае процесс измерения может существенно изменить температуру тела.

Изменения объема жидкости в термометре прекращаются, когда между телом и термометром прекращается теплообмен. При этом температура жидкости в термометре равна температуре тела.

Отметив на трубке термометра положение конца столба жидкости при помещении термометра в тающий лед, а затем в кипящую воду при нормальном давлении и разделив отрезок между этими отметками на 100 равных частей, получают температурную шкалу по Цельсию. Температура тающего льда принимается равной (рис. 83), кипящей воды - (рис. 84). Изменение длины столба жидкости в термометре на одну сотую длины между отметками 0 и соответствует изменению температуры на

Существенным недостатком способа измерения температуры с помощью жидкостных термометров является то, что шкала температуры при этом оказывается связанной с конкретными физическими свойствами определенного вещества, используемого в качестве рабочего тела в термометре, - ртути, глицерина, спирта. Изменение объема различных жидкостей при одинаковом нагревании оказывается несколько различным. Поэтому ртутный и глицериновый термометры, показания которых совпадают при 0 и 100 °С, дают разные показания при других температурах.

Газы в состоянии теплового равновесия.

Для того чтобы найти более совершенный способ определения температуры, нужно найти такую величину, которая была бы одинаковой для любых тел, находящихся в состоянии теплового равновесия.

Экспериментальные исследования свойств газов показали, что для любых газов, находящихся в состоянии теплового равновесия, отношение произведения давления газа на его объем к числу молекул оказывается одинаковым:

Этот опытный факт позволяет принять величину 0 в качестве естественной меры температуры.

Так как то с учетом основного уравнения молекулярно-кинетической теории (24.2) получим

Следовательно, средняя кинетическая энергия молекул любых газов, находящихся в тепловом равновесии, одинакова. Величина 0 равна двум третям средней кинетической энергии беспорядочного теплового движения молекул газа и выражается в джоулях.

В физике обычно выражают температуру в градусах, принимая, что температура Т в градусах и величина 0 связаны уравнением

где - коэффициент пропорциональности, зависящий от выбора единицы температуры.

Отсюда получаем

Последнее уравнение показывает, что имеется возможность выбрать температурную шкалу, не зависящую от природы газа, используемого в качестве рабочего тела.

Практически измерение температуры на основании использования уравнения (25.4) осуществляется с помощью газового термометра (рис. 85). Устройство его таково: в сосуде постоянного объема находится газ, количество газа остается неизменным. При постоянных значениях объема V и числа молекул давление газа, измеряемое манометром, может служить мерой температуры газа, а значит, и любого тела, с которым газ находится в тепловом равновесии.

Абсолютная шкала температур.

Шкала измерения температуры в соответствии с уравнением (25.4) называется абсолютной шкалой. Ее предложил английский физик У. Кельвии (Томсон) (1824-1907), поэтому шкалу называют также - шкалой Кельвина.

До введения абсолютной шкалы температур в практике получила широкое распространение шкала измерения температуры по Цельсию. Поэтому единица температуры по абсолютной шкале, называемая кельвином выбрана равной одному градусу по шкале Цельсия:

Абсолютный нуль температуры.

В левой части уравнения (25.4) все величины могут иметь только положительные значения или быть равными нулю. Поэтому абсолютная температура Т может быть только положительной или равной нулю. Температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю, называется абсолютным нулем температуры.

Постоянная Больцмана.

Значение постоянной к в уравнении (25.4) можно найти по известным значениям давления и объема газа с известным числом молекул при двух значениях температуры

Как известно, 1 моль любого газа содержит примерно молекул и при нормальном давлении Па занимает объем

Опыты показали, что при надевании любого газа при постоянном объеме от 0 до 100° С его давление возрастает от до Па. Подставляя эти значения в уравнение (25.6), получаем

Коэффициент называется постоянной Больцмана, в честь австрийского физика Людвига Больцмана (1844-1906), одного из создателей молекулярно-кинетической теории.

До сих пор мы не имели дела с температурой; мы сознательно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно говорим, что газ при этом нагревается. Теперь надо понять, какое это имеет отношение к температуре. Нам известно, что такое адиабатическое сжатие, а как поставить опыт, чтобы можно было сказать, что он был проведен при постоянной температуре? Если взять два одинаковых ящика с газом, приставить их один к другому и подержать так довольно долго, то даже если вначале эти ящики обладали тем, что мы назвали различной температурой, то в конце концов температуры их станут одинаковыми. Что это означает? Только то, что ящики достигли того состояния, которого они в конце концов достигли бы, если бы их надолго предоставили самим себе! Состояние, в котором температуры двух тел равны - это как раз то окончательное состояние, которого достигают после длительного соприкосновения друг с другом.

Давайте посмотрим, что случится, если ящик разделен на две части движущимся поршнем и каждое отделение заполнено разным газом, как это показано на фиг. 39.2 (для простоты предположим, что имеются два одноатомных газа, скажем, гелий и неон). В отделении 1 атомы массы движутся со скоростью , а в единице объема их насчитывается штук, в отделении 2 эти числа соответственно равны , и . При каких же условиях достигается равновесие?

Фиг. 39.2. Атомы двух разных одноатомных газов, разделенных подвижным поршнем.

Разумеется, бомбардировка слева заставляет поршень двигаться вправо и сжимает газ во втором отделении, затем то же самое происходит справа и поршень ходит так взад и вперед, пока давление с обеих сторон не сравняется, и тогда поршень остановится. Мы можем устроить так, чтобы давление с обеих сторон было одинаковым, для этого нужно, чтобы внутренние энергии, приходящиеся на единичный объем, были одинаковыми или чтобы произведения числа частиц в единице объема на среднюю кинетическую энергию было одинаковым в обоих отделениях. Сейчас мы попытаемся доказать, что при равновесии должны быть одинаковы и отдельные сомножители. Пока мы знаем только, что равны между собой произведения чисел частиц в единичных объемах на средние кинетические энергии

;

это следует из условия равенства давлений и из (39.8). Нам предстоит установить, что по мере постепенного приближения к равновесию, когда температуры газов сравниваются, выполняется не только это условие, а происходит и еще кое-что.

Чтобы было яснее, предположим, что нужное давление слева в ящике достигается за счет очень большой плотности, но малых скоростей. При больших и малых можно получить то же самое давление, что и при малых и больших . Атомы, если они плотно упакованы, могут двигаться медленно, или атомов может быть совсем немного, но ударяют они о поршень с большей силой. Установится ли равновесие навсегда? Сначала кажется, что поршень никуда не сдвинется и так будет всегда, но если продумать все еще раз, то станет ясно, что мы упустили одну очень важную вещь. Дело в том, что давление на поршень вовсе не равномерное, поршень-то раскачивается точно также, как барабанная перепонка, о которой мы говорили в начале главы, ведь каждый новый удар не похож на предыдущий. Получается не постоянное равномерное давление, а скорее нечто вроде барабанной дроби - давление непрерывно меняется, и наш поршень как бы постоянно дрожит. Предположим, что атомы правого отделения ударяют о поршень более или менее равномерно, а слева атомов меньше, и удары их редки, но очень энергичны. Тогда поршень то и дело будет получать очень сильный импульс слева и отходить вправо, в сторону более медленных атомов, причем скорость этих атомов будет возрастать. (При столкновении с поршнем каждый атом приобретает или теряет энергию в зависимости от того, в какую сторону движется поршень в момент столкновения.) После нескольких столкновений поршень качнется, потом еще, еще и еще..., газ в правом отделении будет время от времени встряхиваться, а это приведет к увеличению энергии его атомов, и движение их ускорится. Так будет продолжаться до тех пор, пока не уравновесятся качания поршня. А равновесие установится тогда, когда скорость поршня станет такой, что он будет отбирать у атомов энергию так же быстро, как и отдавать. Итак, поршень движется с какой-то средней скоростью, и нам предстоит найти ее. Если нам это удастся, мы подойдем к решению задачи поближе, потому что атомы должны подогнать свои скорости так, чтобы каждый газ получал через поршень ровно столько энергии, сколько теряет.

Очень трудно рассчитать движение поршня во всех деталях; хотя все это очень легко понять, оказывается, что проанализировать это несколько труднее. Прежде чем приступить к такому анализу, решим другую задачу: пусть ящик заполнен молекулами двух сортов с массами и , скоростями и и т. д.; теперь молекулы смогут познакомиться поближе. Если сначала все молекулы №2 покоятся, то долго это продолжаться не может, потому что о них будут ударять молекулы №1 и сообщать им какую-то скорость. Если молекулы №2 могут двигаться значительно быстрее, чем молекулы №1, то все равно рано или поздно им придется отдать часть своей энергии более медленным молекулам. Таким образом, если ящик заполнен смесью двух газов, то проблема состоит в определении относительной скорости молекул обоих сортов.

Это тоже очень трудная задача, но мы все-таки решим ее. Сначала нам придется решить «подзадачу» (опять это один из тех случаев, когда, независимо от того как решается задача, окончательный результат запоминается легко, а вывод требует большого искусства). Предположим, что перед нами две сталкивающиеся молекулы, обладающие разными массами; во избежание осложнений мы наблюдаем за столкновением из системы их центра масс (ц. м.), откуда легче уследить за ударом молекул. По законам столкновений, выведенным из законов сохранения импульса и энергии, после столкновения молекулы могут двигаться только так, что каждая сохраняет величину своей первоначальной скорости, и изменить они могут только направление движения. Типичное столкновение выглядит так, как его изобразили на фиг. 39.3. Предположим на минутку, что мы наблюдаем столкновения, системы центра масс которых покоятся. Кроме того, надо предположить, что все молекулы движутся горизонтально. Конечно, после первого же столкновения часть молекул будет двигаться уже под каким-то углом к исходному направлению. Иначе говоря, если вначале все молекулы двигались горизонтально, то спустя некоторое время мы обнаружим уже вертикально движущиеся молекулы. После ряда других столкновений они снова изменят направление и повернутся еще на какой-то угол. Таким образом, если кому-нибудь и удастся сначала навести порядок среди молекул, то все равно они очень скоро разбредутся по разным направлениям и с каждым разом будут все больше и больше распыляться. К чему же это в конце концов приведет? Ответ: Любая пара молекул будет двигаться в произвольно выбранном направлении столь же охотно, как и в любом другом. После этого дальнейшие столкновения уже не смогут изменить распределения молекул.

Фиг. 39. 3. Столкновение двух неодинаковых молекул, если смотреть из системы центра масс.

Что имеется в виду, когда говорят о равновероятном движении в любом направлении? Конечно, нельзя говорить о вероятности движения вдоль заданной прямой – прямая слишком тонка, чтобы к ней можно было относить вероятность, а следует взять единицу «чего-нибудь». Идея заключается в том, что через заданный участок сферы с центром в точке столкновения проходит столько же молекул, сколько через любой другой участок сферы. В результате столкновений молекулы распределяются по направлениям так, что любым двум равным по площади участкам сферы будут соответствовать равные вероятности (т. е. одинаковое число прошедших через эти участки молекул).

Между прочим, если мы будем сравнивать первоначальное направление и направление, образующее с ним какой-то угол , то интересно, что элементарная площадь на сфере единичного радиуса равна произведению на , или, что то же самое, на дифференциал . Это означает, что косинус угла между двумя направлениями с равной вероятностью принимает любое значение между и .

Теперь нам надо вспомнить о том, что имеется на самом деле; ведь у нас нет столкновений в системе центра масс, а сталкиваются два атома с произвольными векторными скоростями и . Что происходит с ними? Мы поступим так: снова перейдем к системе центра масс, только теперь она движется с «усредненной по массам» скоростью . Если следить за столкновением из системы центра масс, то оно будет выглядеть так, как это изображено на фиг. 39.3, только надо подумать об относительной скорости столкновения . Относительная скорость равна . Дело, следовательно, обстоит так: движется система центра масс, а в системе центра масс молекулы сближаются с относительной скоростью ; столкнувшись, они движутся по новым направлениям. Пока все это происходит, центр масс все время движется с одной и той же скоростью без изменений.

Ну и что же получится в конце концов? Из предыдущих рассуждений делаем следующий вывод: при равновесии все направления равновероятны относительно направления движения центра масс. Это означает, что в конце концов не будет никакой корреляции между направлением относительной скорости и движением центра масс. Если бы даже такая корреляция существовала вначале, то столкновения ее бы разрушили и она в конце концов исчезла бы полностью. Поэтому среднее значение косинуса угла между и равно нулю. Это значит, что

Скалярное произведение легко выразить через и :

Займемся сначала ; чему равно среднее ? Иначе говоря, чему равно среднее проекции скорости одной молекулы на направление скорости другой молекулы? Ясно, что вероятности движения молекулы как в одну сторону, так и в противоположную одинаковы. Среднее значение скорости в любом направлении равно нулю. Поэтому и в направлении среднее значение тоже равно нулю. Итак, среднее значение равно нулю! Следовательно, мы пришли к выводу, что среднее должно быть равно . Это значит, что средние кинетические энергии обеих молекул должны быть равны:

Если газ состоит из атомов двух сортов, то можно показать (и мы даже считаем, что нам удалось это сделать), что средние кинетические энергии атомов каждого сорта равны, когда газ находится в состоянии равновесия. Это означает, что тяжелые атомы движутся медленнее, чем легкие; это легко проверить, поставив эксперимент с «атомами» различных масс в воздушном желобе.

Теперь сделаем следующий шаг и покажем, что если в ящике имеются два газа, разделенные перегородкой, то по мере достижения равновесия средние кинетические энергии атомов разных газов будут одинаковы, хотя атомы и заключены в разные ящики. Рассуждение можно построить по-разному. Например, можно представить, что в перегородке проделана маленькая дырочка (фиг. 39.4), так что молекулы одного газа проходят сквозь нее, а молекулы второго слишком велики и не пролезают. Когда установится равновесие, то в том отделении, где находится смесь газов, средние кинетические энергии молекул каждого сорта сравняются. Но ведь в числе проникших сквозь дырочку молекул есть и такие, которые не потеряли при этом энергии, поэтому средняя кинетическая энергия молекул чистого газа должна быть равна средней кинетической энергии молекул смеси. Это не очень удовлетворительное доказательство, потому что ведь могло и не быть такой дырочки, сквозь которую пройдут молекулы одного газа и не смогут пройти молекулы другого.

Фиг. 39.4. Два газа в ящике, разделенном полупроницаемой перегородкой.

Давайте вернемся к задаче о поршне. Можно показать, что кинетическая энергия поршня тоже должна быть равна . Фактически кинетическая энергия поршня связана только с его горизонтальным движением. Пренебрегая возможным движением поршня вверх и вниз, мы найдем, что горизонтальному движению соответствует кинетическая энергия . Но точно так же, исходя из равновесия на другой стороне, можно показать, что кинетическая энергия поршня должна быть равна . Хотя мы повторяем предыдущее рассуждение, возникают некоторые дополнительные трудности в связи с тем, что в результате столкновений средние кинетические энергии поршня и молекулы газа сравниваются, потому что поршень находится не внутри газа, а смещен в одну сторону.

Если вас не удовлетворит и это доказательство, то можно придумать искусственный пример, когда равновесие обеспечивается устройством, по которому молекулы каждого газа бьют с обеих сторон. Предположим, что сквозь поршень проходит короткий стержень, на концах которого насажено по шару. Стержень может двигаться сквозь поршень без трения. По каждому из шаров со всех сторон бьют молекулы одного сорта. Пусть масса нашего устройства равна , а массы молекул газа, как и раньше, равны и . В результате столкновений с молекулами первого сорта кинетическая энергия тела массы равна среднему значению (мы уже доказали это). Точно так же, столкновения с молекулами второго сорта заставляют тело иметь кинетическую энергию, равную среднему значению . Если газы находятся в тепловом равновесии, то кинетические энергии обоих шаров должны быть равны. Таким образом, результат, доказанный для случая смеси газов, можно немедленно обобщить на случай двух разных газов при одинаковой температуре.

Итак, если два газа имеют одинаковую температуру, то средние кинетические энергии молекул этих газов в системе центра масс равны.

Средняя кинетическая энергия молекул - это свойство только «температуры». А будучи свойством «температуры», а не газа, она может служить определением температуры. Средняя кинетическая энергия молекулы, таким образом, есть некоторая функция температуры. Но кто нам подскажет, по какой шкале отсчитывать температуру? Мы можем сами определить шкалу температуры так, что средняя энергия будет пропорциональна температуре. Лучше всего для этого назвать «температурой» саму среднюю энергию. Это была бы самая простая функция, но, к несчастью, эту шкалу уже выбрали иначе и вместо того, чтобы назвать энергию молекулы просто «температурой», используют постоянный множитель, связывающий среднюю энергию молекулы и градус абсолютной температуры, или градус Кельвина. Этот множитель: дж на каждый градус Кельвина. Таким образом, если абсолютная температура газа равна , то средняя кинетическая энергия молекулы равна (множитель введен только для удобства, благодаря чему исчезнут множители в других формулах).

Заметим, что кинетическая энергия, связанная с составляющей движения в любом направлении, равна только . Три независимых направления движения доводят ее до .

Основное уравнение молекулярно-кинетической теории (МКТ) газов:

(где $n=\frac{N}{V}$ -- концентрация частиц в газе, N -- количество частиц, V- объем газа, $\left\langle E\right\rangle \ $-средняя кинетическая энергия поступательного движения молекул в газе, $\left\langle v_{kv}\right\rangle $- средняя квадратичная скорость, $m_0$- масса молекулы) связывает давление - макропараметр, который довольно легко измерять с микропараметрами -- средней энергией движения отдельной молекулы или, в другом написании, массой частицы и ее скоростью. Однако, измеряя только давление, невозможно определить кинетические энергии частиц в отдельности от концентрации. Следовательно, для того, чтобы в полном объеме мы имели возможность находить микропараметры, необходимо знание еще какой-то физической величины, которая связана с кинетической энергией частиц, составляющих газ. Таковой является термодинамическая температура.

Газовая температура

Для того, чтобы определить, что такое газовая температура, необходимо вспомнить важное свойство, которое говорит о том, что при равновесии средняя кинетическая энергия молекул в смеси газов одна и та же для различных компонент этой смеси. Из этого свойства вытекает то, что если два газа в разных сосудах находятся в тепловом равновесии, то средние кинетические энергии молекул этих газов одинаковы. Это свойство и используем. Кроме того, эксперименты доказали, что для любых газов (количество газов не ограничено), которые находятся в состоянии теплового равновесия, выполняется следующее соотношение:

Учитывая выше сказанное, используем (1) и (2), получим:

Из уравнения (3) получается, что величина $\theta $, которую мы вводим как температуру, измеряется, как и энергия, в Дж. На практике температура в системе СИ измеряется в кельвинах. Следовательно, введем коэффициент, который устранит это противоречие, его размерность будет $\frac{Дж}{К}$, обозначение k равен он $1,38\cdot {10}^{-23}$. Этот коэффициент называют постоянной Больцмана. Так:

\[\theta =kT\ \left(4\right),\]

где T -- термодинамическая температура в кельвинах.

И ее связь со средней кинетической энергией движения молекул газа очевидна:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(5\right).\]

Уравнение (5) показывает, что средняя энергия теплового движения молекул прямо пропорциональна температуре газа. Температуру назвали абсолютной. Ее физический смысл в том, что она определяется средней кинетической энергией приходящейся на одну молекулу. Это с одной стороны. С другой, температура является характеристикой системы в целом. Так уравнение (5) связывает параметры макромира с параметрами микромира. Говорят, что температура является мерой средней кинетической энергии молекул. Мы можем измерить температуру системы, а за тем вычислить энергию молекул.

Абсолютный ноль температур

В состоянии термодинамического равновесия все части системы имеют одинаковую температуру. Температура, при которой средняя кинетическая энергия молекул равна нулю, давление идеального газа равно нулю, называют абсолютным нулем температур. Абсолютная температура не может быть отрицательной.

Пример 1

Задание: Вычислить среднюю кинетическую энергию поступательного движения молекулы кислорода при температуре T=290K. Среднюю квадратичную скорость капельки воды диаметра d=${10}^{-7}м$, взвешенной в воздухе.

Найти среднюю кинетическую энергию движения молекулы кислорода можно используя уравнение, связывающее ее (энергию) и температуру:

\[\left\langle E\right\rangle =\frac{3}{2}kT\left(1.1\right).\]

Поведем расчет, так как все величины заданы в СИ:

\[\left\langle E\right\rangle =\frac{3}{2}\cdot 1,38\cdot {10}^{-23}\cdot {10}^{-7}=6\cdot {10}^{-21}\left(Дж\right).\]

Приступим ко второй части задачи. Капельку воды, которая взвешена в воздухе, можно считать шаром (рис.1). Следовательно, массу капельки найдем как $m=\rho \cdot V=\rho \cdot \pi {\frac{d}{6}}^3.$

Рассчитаем массу капельки воды, из справочных материалов плотность воды при нормальных условиях равна $\rho =1000\frac{кг}{м^3}$:$\ тогда$

Масса капельки очень мала, следовательно, саму капельку можно сравнить с молекулой газа и применить для расчета средней квадратичной скорости капли формулу:

\[\left\langle E\right\rangle =\frac{m{\left\langle v_{kv}\right\rangle }^2}{2}\ \left(1.2\right),\]

где $\left\langle E\right\rangle $ мы уже рассчитали, а из (1.1) очевидно, энергия не зависит от вида газа, зависит только от температуры, следовательно, мы можем использовать полученное значение энергии. Выразим из (1.2) скорость:$\ \cdot $

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\left\langle E\right\rangle }{m}}=\sqrt{\frac{6\cdot 2\left\langle E\right\rangle }{\pi \rho d^3}}=3\sqrt{\frac{2kT}{\pi \rho d^3}}\ \left(1.3\right)\]

Проведем расчёт:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\cdot 6\cdot {10}^{-21}}{5,2\cdot {10}^{-19}}}=0,15\ \left(\frac{м}{с}\right)\]

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равна $6\cdot {10}^{-21}\ Дж$. Средняя квадратичная скорость капельки воды при заданных условиях равна 0,15 м/с.

Пример 2

Задание: Средняя энергия поступательного движения молекул идеального газа равна $\left\langle E\right\rangle .\ $Давление газа p. Найдите концентрацию частиц газа.

К нему добавим уравнение связи средней энергии поступательного движения молекул и температуры системы:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(2.2\right)\]

Из (2.1) выразим искомую концентрацию:

Из $\left(2.2\right)\ $выразим $kT$:

Подставим (2.4) в (2.3):

Ответ: Концентрация частиц газа может быть найдена как $n=\frac{3p}{2\left\langle E\right\rangle }$.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то