Средняя кинетическая энергия. Идеальный газ

При понижении абсолютной температуры идеального газа в 1,5 раза средняя кинетическая энергия теплового движения молекул

1) увеличится в 1,5 раза

2) уменьшится в 1,5 раза

3) уменьшится в 2,25 раза

4) не изменится

Решение.

При понижении абсолютной температуры в 1,5 раза средняя кинетическая энергия также уменьшится в 1,5 раза.

Правильный ответ: 2.

Ответ: 2

При уменьшении абсолютной температуры идеального газа в 4 раза средняя квадратичная скорость теплового движения его молекул

1) уменьшится в 16 раз

2) уменьшится в 2 раза

3) уменьшится в 4 раза

4) не изменится

Решение.

Абсолютная температура идеального газа пропорциональна квадрату средней квадратичной скорости: Таким образом, при уменьшении абсолютной температуры в 4 раза средняя квадратичная скорость движения его молекул уменьшится в 2 раза.

Правильный ответ: 2.

Владимир Покидов (Москва) 21.05.2013 16:37

Нам послали такую замечательную формулу как Е=3/2kT, Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна его температуре, как изменяется температура,так изменяется и средняя кинетическая энергия теплового движения молекул

Алексей

Добрый день!

Все верно, по сути температура и средняя энергия теплового движения --- это одно и тоже. Но нас в этой задаче спрашивают про скорость, а не про энергию

При повышении абсолютной температуры идеального газа в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре, например, для одноатомного газа:

При повышении абсолютной температуры в 2 раза средняя кинетическая энергия также увеличится в 2 раза.

Правильный ответ: 4.

Ответ: 4

При понижении абсолютной температуры идеального газа в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) уменьшится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре:

При понижении абсолютной температуры в 2 раза средняя кинетическая энергия также уменьшится в 2 раза.

Правильный ответ: 3.

Ответ: 3

При увеличении средней квадратичной скорости теплового движения молекул в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 4 раза

4) увеличится в 2 раза

Решение.

Следовательно, увеличение средней квадратичной скорости теплового движения в 2 раза приведет к увеличению средней кинетической энергии в 4 раза.

Правильный ответ: 2.

Ответ: 2

Алексей (Санкт-Петербург)

Добрый день!

Обе формулы имеют место. Использованная в решении формула (первое равенство) представляет собой просто математическую запись определения средней кинетической энергии: что нужно взять все молекулы, посчитать их кинетические энергии, а потом взять среднее арифметическое. Второе (тождественное) равенство в этой формуле — всего на всего определение того, что такое средняя квадратичная скорость.

Ваша формула на самом деле куда более серьезная, она показывает, что среднюю энергию теплового движения можно использовать в качестве меры температуры.

При уменьшении средней квадратичной скорости теплового движения молекул в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 4 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул пропорциональна квадрату средней квадратичной скорости теплового движения молекул:

Следовательно, уменьшение средней квадратичной скорости теплового движения в 2 раза приведет к уменьшению средней кинетической энергии в 4 раза.

Правильный ответ: 3.

Ответ: 3

При увеличении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость

1) уменьшится в 4 раза

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Следовательно, при увеличении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость увеличится в 2 раза.

Правильный ответ: 4.

Ответ: 4

Алексей (Санкт-Петербург)

Добрый день!

Знак - это тождественное равенство, то есть равенство выполняющееся всегда, по сути, когда стоит такой знак, это означает, что величины равны по определению.

Яна Фирсова (Геленджик) 25.05.2012 23:33

Юрий Шойтов (Курск) 10.10.2012 10:00

Здравствуйте, Алексей!

В Вашем решении ошибка, не влияющая на ответ. Зачем Вам понадобилось в решении говорить о квадрате среднего значения модуля скорости? В задании не такого термина. Тем более, что он вовсе не равен средне квадратичному значению, а только пропорционален. Поэтому Ваше тождество является ложным.

Юрий Шойтов (Курск) 10.10.2012 22:00

Добрый вечер, Алексей!

Если это так, в чем же состоит прикол, что Вы в одной и той же формуле одну и ту же величину обозначаете по разному?! Разве что для придания большего наукообразия. Поверьте в нашей методике преподавания физики и без Вас этого "добра" достаточно.

Алексей (Санкт-Петербург)

Никак не могу понять, что Вас смущает. У меня написано, что квадрат среднеквадратичной скорости по определению есть среднее значение квадрата скорости. В черта просто часть обозначения среднеквадратичной скорости, а в - процедура усреднения.

При уменьшении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость

1) уменьшится в 4 раза

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул пропорциональна квадрату средней квадратичной скорости:

Следовательно, при уменьшении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость уменьшится в 2 раза.

Правильный ответ: 3.

Ответ: 3

При повышении абсолютной температуры одноатомного идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул

1) уменьшится в раз

2) увеличится в раз

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Абсолютная температура идеального одноатомного газа пропорциональна квадрату средней квадратичной скорости теплового движения молекул. Действительно:

Следовательно, при повышении абсолютной температуры идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул увеличится в раз.

Правильный ответ: 2.

Ответ: 2

При понижении абсолютной температуры идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул

1) уменьшится в раз

2) увеличится в раз

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Абсолютная температура идеального газа пропорциональна квадрату средней квадратичной скорости теплового движения молекул. Действительно:

Следовательно, при понижении абсолютной температуры идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул уменьшится в раз.

Правильный ответ: 1.

Ответ: 1

Алексей (Санкт-Петербург)

Добрый день!

Не путайте, средняя величина от квадрата скорости равна не квадрату средней скорости, а квадрату средней квадратичной скорости. Средняя скорость для молекула газа вообще равна нулю.

Юрий Шойтов (Курск) 11.10.2012 10:07

Путаете все-таки Вы а не гость.

Во всей школьной физике буквой v без стрелки обозначается модуль скорости. Если над этой буквой стоит черта, то это обозначает среднее значение модуля скорости, которое вычисляется из распределения Максвелла, и оно равно 8RT/пи*мю. Корень же квадратный из средней квадратичной скорости равен 3RT/пи*мю. Как видите никакого равенства в Вашем тождестве нет.

Алексей (Санкт-Петербург)

Добрый день!

Даже не знаю, что возразить, это, наверное, вопрос, обозначений. В учебнике Мякишева средняя квадратичная скорость обозначается именно так, Сивухин использует обозначение . А Вы как привыкли обозначать эту величину?

Игорь (Кому надо тот знает) 01.02.2013 16:15

Почему температуру идеального газа вы расчитывали по формуле кинетической энергии? Ведь средняя квадратичная скорость находится по формуле: http://reshuege.ru/formula/d5/d5e3acf50adcde572c26975a0d743de1.png = Корень из (3kТ/m0)

Алексей (Санкт-Петербург)

Добрый день!

Если Вы приглядитесь внимательно, то увидите, что Ваше определение средней квадратичной скорости совпадает с тем, что использовано в решении.

По определению, квадрат средней квадратичной скорости равен среднему квадрату скорости, а именно через последний определяется температура газа.

При уменьшении средней кинетической энергии теплового движения молекул в 2 раза абсолютная температура

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре:

Следовательно, при уменьшении средней кинетической энергии теплового движения в 2 раза абсолютная температура газа также уменьшится в 2 раза.

Правильный ответ: 3.

Ответ: 3

В результате нагревания неона, температура этого газа увеличилась в 4 раза. Средняя кинетическая энергия теплового движения его молекул при этом

1) увеличилась в 4 раза

2) увеличилась в 2 раза

3) уменьшилась в 4 раза

4) не изменилась

Таким образом, при результате нагревания неона в 4 раза средняя кинетическая энергия теплового движения его молекул увеличивается в 4 раза.

Правильный ответ: 1.

До сих пор мы не имели дела с температурой; мы сознательно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно говорим, что газ при этом нагревается. Теперь надо понять, какое это имеет отношение к температуре. Нам известно, что такое адиабатическое сжатие, а как поставить опыт, чтобы можно было сказать, что он был проведен при постоянной температуре? Если взять два одинаковых ящика с газом, приставить их один к другому и подержать так довольно долго, то даже если вначале эти ящики обладали тем, что мы назвали различной температурой, то в конце концов температуры их станут одинаковыми. Что это означает? Только то, что ящики достигли того состояния, которого они в конце концов достигли бы, если бы их надолго предоставили самим себе! Состояние, в котором температуры двух тел равны - это как раз то окончательное состояние, которого достигают после длительного соприкосновения друг с другом.

Давайте посмотрим, что случится, если ящик разделен на две части движущимся поршнем и каждое отделение заполнено разным газом, как это показано на фиг. 39.2 (для простоты предположим, что имеются два одноатомных газа, скажем, гелий и неон). В отделении 1 атомы массы движутся со скоростью , а в единице объема их насчитывается штук, в отделении 2 эти числа соответственно равны , и . При каких же условиях достигается равновесие?

Фиг. 39.2. Атомы двух разных одноатомных газов, разделенных подвижным поршнем.

Разумеется, бомбардировка слева заставляет поршень двигаться вправо и сжимает газ во втором отделении, затем то же самое происходит справа и поршень ходит так взад и вперед, пока давление с обеих сторон не сравняется, и тогда поршень остановится. Мы можем устроить так, чтобы давление с обеих сторон было одинаковым, для этого нужно, чтобы внутренние энергии, приходящиеся на единичный объем, были одинаковыми или чтобы произведения числа частиц в единице объема на среднюю кинетическую энергию было одинаковым в обоих отделениях. Сейчас мы попытаемся доказать, что при равновесии должны быть одинаковы и отдельные сомножители. Пока мы знаем только, что равны между собой произведения чисел частиц в единичных объемах на средние кинетические энергии

;

это следует из условия равенства давлений и из (39.8). Нам предстоит установить, что по мере постепенного приближения к равновесию, когда температуры газов сравниваются, выполняется не только это условие, а происходит и еще кое-что.

Чтобы было яснее, предположим, что нужное давление слева в ящике достигается за счет очень большой плотности, но малых скоростей. При больших и малых можно получить то же самое давление, что и при малых и больших . Атомы, если они плотно упакованы, могут двигаться медленно, или атомов может быть совсем немного, но ударяют они о поршень с большей силой. Установится ли равновесие навсегда? Сначала кажется, что поршень никуда не сдвинется и так будет всегда, но если продумать все еще раз, то станет ясно, что мы упустили одну очень важную вещь. Дело в том, что давление на поршень вовсе не равномерное, поршень-то раскачивается точно также, как барабанная перепонка, о которой мы говорили в начале главы, ведь каждый новый удар не похож на предыдущий. Получается не постоянное равномерное давление, а скорее нечто вроде барабанной дроби - давление непрерывно меняется, и наш поршень как бы постоянно дрожит. Предположим, что атомы правого отделения ударяют о поршень более или менее равномерно, а слева атомов меньше, и удары их редки, но очень энергичны. Тогда поршень то и дело будет получать очень сильный импульс слева и отходить вправо, в сторону более медленных атомов, причем скорость этих атомов будет возрастать. (При столкновении с поршнем каждый атом приобретает или теряет энергию в зависимости от того, в какую сторону движется поршень в момент столкновения.) После нескольких столкновений поршень качнется, потом еще, еще и еще..., газ в правом отделении будет время от времени встряхиваться, а это приведет к увеличению энергии его атомов, и движение их ускорится. Так будет продолжаться до тех пор, пока не уравновесятся качания поршня. А равновесие установится тогда, когда скорость поршня станет такой, что он будет отбирать у атомов энергию так же быстро, как и отдавать. Итак, поршень движется с какой-то средней скоростью, и нам предстоит найти ее. Если нам это удастся, мы подойдем к решению задачи поближе, потому что атомы должны подогнать свои скорости так, чтобы каждый газ получал через поршень ровно столько энергии, сколько теряет.

Очень трудно рассчитать движение поршня во всех деталях; хотя все это очень легко понять, оказывается, что проанализировать это несколько труднее. Прежде чем приступить к такому анализу, решим другую задачу: пусть ящик заполнен молекулами двух сортов с массами и , скоростями и и т. д.; теперь молекулы смогут познакомиться поближе. Если сначала все молекулы №2 покоятся, то долго это продолжаться не может, потому что о них будут ударять молекулы №1 и сообщать им какую-то скорость. Если молекулы №2 могут двигаться значительно быстрее, чем молекулы №1, то все равно рано или поздно им придется отдать часть своей энергии более медленным молекулам. Таким образом, если ящик заполнен смесью двух газов, то проблема состоит в определении относительной скорости молекул обоих сортов.

Это тоже очень трудная задача, но мы все-таки решим ее. Сначала нам придется решить «подзадачу» (опять это один из тех случаев, когда, независимо от того как решается задача, окончательный результат запоминается легко, а вывод требует большого искусства). Предположим, что перед нами две сталкивающиеся молекулы, обладающие разными массами; во избежание осложнений мы наблюдаем за столкновением из системы их центра масс (ц. м.), откуда легче уследить за ударом молекул. По законам столкновений, выведенным из законов сохранения импульса и энергии, после столкновения молекулы могут двигаться только так, что каждая сохраняет величину своей первоначальной скорости, и изменить они могут только направление движения. Типичное столкновение выглядит так, как его изобразили на фиг. 39.3. Предположим на минутку, что мы наблюдаем столкновения, системы центра масс которых покоятся. Кроме того, надо предположить, что все молекулы движутся горизонтально. Конечно, после первого же столкновения часть молекул будет двигаться уже под каким-то углом к исходному направлению. Иначе говоря, если вначале все молекулы двигались горизонтально, то спустя некоторое время мы обнаружим уже вертикально движущиеся молекулы. После ряда других столкновений они снова изменят направление и повернутся еще на какой-то угол. Таким образом, если кому-нибудь и удастся сначала навести порядок среди молекул, то все равно они очень скоро разбредутся по разным направлениям и с каждым разом будут все больше и больше распыляться. К чему же это в конце концов приведет? Ответ: Любая пара молекул будет двигаться в произвольно выбранном направлении столь же охотно, как и в любом другом. После этого дальнейшие столкновения уже не смогут изменить распределения молекул.

Фиг. 39. 3. Столкновение двух неодинаковых молекул, если смотреть из системы центра масс.

Что имеется в виду, когда говорят о равновероятном движении в любом направлении? Конечно, нельзя говорить о вероятности движения вдоль заданной прямой – прямая слишком тонка, чтобы к ней можно было относить вероятность, а следует взять единицу «чего-нибудь». Идея заключается в том, что через заданный участок сферы с центром в точке столкновения проходит столько же молекул, сколько через любой другой участок сферы. В результате столкновений молекулы распределяются по направлениям так, что любым двум равным по площади участкам сферы будут соответствовать равные вероятности (т. е. одинаковое число прошедших через эти участки молекул).

Между прочим, если мы будем сравнивать первоначальное направление и направление, образующее с ним какой-то угол , то интересно, что элементарная площадь на сфере единичного радиуса равна произведению на , или, что то же самое, на дифференциал . Это означает, что косинус угла между двумя направлениями с равной вероятностью принимает любое значение между и .

Теперь нам надо вспомнить о том, что имеется на самом деле; ведь у нас нет столкновений в системе центра масс, а сталкиваются два атома с произвольными векторными скоростями и . Что происходит с ними? Мы поступим так: снова перейдем к системе центра масс, только теперь она движется с «усредненной по массам» скоростью . Если следить за столкновением из системы центра масс, то оно будет выглядеть так, как это изображено на фиг. 39.3, только надо подумать об относительной скорости столкновения . Относительная скорость равна . Дело, следовательно, обстоит так: движется система центра масс, а в системе центра масс молекулы сближаются с относительной скоростью ; столкнувшись, они движутся по новым направлениям. Пока все это происходит, центр масс все время движется с одной и той же скоростью без изменений.

Ну и что же получится в конце концов? Из предыдущих рассуждений делаем следующий вывод: при равновесии все направления равновероятны относительно направления движения центра масс. Это означает, что в конце концов не будет никакой корреляции между направлением относительной скорости и движением центра масс. Если бы даже такая корреляция существовала вначале, то столкновения ее бы разрушили и она в конце концов исчезла бы полностью. Поэтому среднее значение косинуса угла между и равно нулю. Это значит, что

Скалярное произведение легко выразить через и :

Займемся сначала ; чему равно среднее ? Иначе говоря, чему равно среднее проекции скорости одной молекулы на направление скорости другой молекулы? Ясно, что вероятности движения молекулы как в одну сторону, так и в противоположную одинаковы. Среднее значение скорости в любом направлении равно нулю. Поэтому и в направлении среднее значение тоже равно нулю. Итак, среднее значение равно нулю! Следовательно, мы пришли к выводу, что среднее должно быть равно . Это значит, что средние кинетические энергии обеих молекул должны быть равны:

. (39.21)

Если газ состоит из атомов двух сортов, то можно показать (и мы даже считаем, что нам удалось это сделать), что средние кинетические энергии атомов каждого сорта равны, когда газ находится в состоянии равновесия. Это означает, что тяжелые атомы движутся медленнее, чем легкие; это легко проверить, поставив эксперимент с «атомами» различных масс в воздушном желобе.

Теперь сделаем следующий шаг и покажем, что если в ящике имеются два газа, разделенные перегородкой, то по мере достижения равновесия средние кинетические энергии атомов разных газов будут одинаковы, хотя атомы и заключены в разные ящики. Рассуждение можно построить по-разному. Например, можно представить, что в перегородке проделана маленькая дырочка (фиг. 39.4), так что молекулы одного газа проходят сквозь нее, а молекулы второго слишком велики и не пролезают. Когда установится равновесие, то в том отделении, где находится смесь газов, средние кинетические энергии молекул каждого сорта сравняются. Но ведь в числе проникших сквозь дырочку молекул есть и такие, которые не потеряли при этом энергии, поэтому средняя кинетическая энергия молекул чистого газа должна быть равна средней кинетической энергии молекул смеси. Это не очень удовлетворительное доказательство, потому что ведь могло и не быть такой дырочки, сквозь которую пройдут молекулы одного газа и не смогут пройти молекулы другого.

Фиг. 39.4. Два газа в ящике, разделенном полупроницаемой перегородкой.

Давайте вернемся к задаче о поршне. Можно показать, что кинетическая энергия поршня тоже должна быть равна . Фактически кинетическая энергия поршня связана только с его горизонтальным движением. Пренебрегая возможным движением поршня вверх и вниз, мы найдем, что горизонтальному движению соответствует кинетическая энергия . Но точно так же, исходя из равновесия на другой стороне, можно показать, что кинетическая энергия поршня должна быть равна . Хотя мы повторяем предыдущее рассуждение, возникают некоторые дополнительные трудности в связи с тем, что в результате столкновений средние кинетические энергии поршня и молекулы газа сравниваются, потому что поршень находится не внутри газа, а смещен в одну сторону.

Если вас не удовлетворит и это доказательство, то можно придумать искусственный пример, когда равновесие обеспечивается устройством, по которому молекулы каждого газа бьют с обеих сторон. Предположим, что сквозь поршень проходит короткий стержень, на концах которого насажено по шару. Стержень может двигаться сквозь поршень без трения. По каждому из шаров со всех сторон бьют молекулы одного сорта. Пусть масса нашего устройства равна , а массы молекул газа, как и раньше, равны и . В результате столкновений с молекулами первого сорта кинетическая энергия тела массы равна среднему значению (мы уже доказали это). Точно так же, столкновения с молекулами второго сорта заставляют тело иметь кинетическую энергию, равную среднему значению . Если газы находятся в тепловом равновесии, то кинетические энергии обоих шаров должны быть равны. Таким образом, результат, доказанный для случая смеси газов, можно немедленно обобщить на случай двух разных газов при одинаковой температуре.

Итак, если два газа имеют одинаковую температуру, то средние кинетические энергии молекул этих газов в системе центра масс равны.

Средняя кинетическая энергия молекул - это свойство только «температуры». А будучи свойством «температуры», а не газа, она может служить определением температуры. Средняя кинетическая энергия молекулы, таким образом, есть некоторая функция температуры. Но кто нам подскажет, по какой шкале отсчитывать температуру? Мы можем сами определить шкалу температуры так, что средняя энергия будет пропорциональна температуре. Лучше всего для этого назвать «температурой» саму среднюю энергию. Это была бы самая простая функция, но, к несчастью, эту шкалу уже выбрали иначе и вместо того, чтобы назвать энергию молекулы просто «температурой», используют постоянный множитель, связывающий среднюю энергию молекулы и градус абсолютной температуры, или градус Кельвина. Этот множитель: дж на каждый градус Кельвина. Таким образом, если абсолютная температура газа равна , то средняя кинетическая энергия молекулы равна (множитель введен только для удобства, благодаря чему исчезнут множители в других формулах).

Заметим, что кинетическая энергия, связанная с составляющей движения в любом направлении, равна только . Три независимых направления движения доводят ее до .

МКТ поведение молекул в телах можно охарактеризовать средними значениями тех или иных величин, которые относятся не к отдельным молекулам, а ко всем молекулам в целом. T, V, P

МКТ МЕХАНИЧЕСКИЕ ВЕЛИЧИНЫ V T P величина, характеризующая внутреннее состояние тела (в механике ее нет)

МКТ МАКРОСКОПИЧЕСКИЕ ПАРАМЕТРЫ Величины, характеризующие состояние макроскопических тел без учета молекулярного строения тел (V, P, T) называют макроскопическими параметрами.

Температура Степень нагретости тел. холодное Т 1 теплое

Температура Почему термометр не показывает температуру тела сразу после того как он соприкоснулся с ним?

Тепловое равновесие - это такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными Устанавливается с течением времени между телами, имеющими различную температуру.

Температура Важное свойство тепловых явлений Любое макроскопическое тело (или группа макроскопических тел) при неизменных внешних условиях самопроизвольно переходит в состояние теплового равновесия.

Температура Неизменные условия значит, что в системе 1 Не изменяются объем и давление 2 Отсутствует теплообмен 3 Температура системы остается постоянной

Температура Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии 1 Меняются скорости молекул при столкновениях 2 Изменяется положение молекул

Температура Система может находиться в различных состояниях. В любом состоянии температура имеет свое строго определенное значение. Другие физические величины могут иметь разные значения, которые не изменяются со временем.

Измерение температуры Можно использовать любую физическую величину, которая зависит от температуры. Чаще всего: V = V(T) Температурные шкалы Цельсия абсолютная (шкала Кельвина) Фаренгейта

Измерение температуры Температурные шкалы Шкала Цельсия = международная практическая шкала 0°С Температура таяния льда Реперные точки P 0 = 101325 Па 100°С Температура кипения воды Реперные точки – точки, на которых основывается измерительная шкала

Измерение температуры Температурные шкалы Абсолютная шкала (шкала Кельвина) Нулевая температура по шкале Кельвина соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия. 1 К = 1 °С Уильям Томсон (лорд Кельвин) Единица температуры = 1 Кельвин = К

Измерение температуры Абсолютная температура = мера средней кинетической энергии движения молекул Θ = κT [Θ] = Дж [T] = К κ – постоянная Больцмана Устанавливает связь между температурой в энергетических единицах с температурой в кельвинах

Для того чтобы сравнить уравнение состояния идеального газа и основное уравнение молекулярно-кинетической теории , запишем их в наиболее совпадающем виде.

Из этих соотношений видно, что:

(1.48)

величина, которая называется постоянной Больцмана - коэффициент, позволяющий энергию движения молекул (конечно, среднюю) выражать в единицах температуры , а не только в джоулях , как до сих пор.

Как уже говорилось, «объяснить» в физике означает установить связь нового явления, в данном случае - теплового, с уже изученным - механическим движением. Это и есть объяснение тепловых явлений. Именно с целью находить такое объяснение в настоящее время разработана целая наука - статистическая физика . Слово «статистическая» означает, что объекты исследования - это явления, в которых участвует множество частиц со случайными (у каждой частицы) свойствами. Исследование таких объектов у человеческих множеств - народов, населения - предмет статистики.

Именно статистическая физика является основой химии как науки, а не как в поваренной книге - «слейте то и то, получится, что надо!» Почему получится? Ответ в свойствах (статистических свойствах) молекул.

Отметим, что, конечно, возможно использование найденных связей энергии движения молекул с температурой газа и в другом направлении для выявления свойства самого движения молекул, вообще свойств газа. Например, ясно, что внутри газа молекулы обладают энергией:

(1.50)

Эта энергия так и называется - внутренняя .Внутренняя энергия есть всегда! Даже когда тело покоится и не взаимодействует ни с какими другими телами, оно обладает внутренней энергией.

Если молекула - не «кругленький шарик», а представляет собой «гантель» (двухатомную молекулу), то кинетическая энергия представляет собой сумму энергии поступательного движения (только поступательное движение и рассматривалось фактически до сих пор) и вращательного движения (рис . 1.18 ).

Рис . 1.18. Вращение молекулы

Произвольное вращение можно представить себе как последовательное вращение сначала вокруг оси x , а затем вокруг осиz .

Запас энергии такого движения ничем не должен отличаться от запаса движения по прямой. Молекула «не знает» - летит она или крутится. Тогда во всех формулах необходимо вместо числа «три» ставить число «пять».

(1.51)

Такие газы, как азот, кислород, воздух и т. д., нужно рассматривать именно по последним формулам.

Вообще, если для строгой фиксации молекулы в пространстве нужно i чисел (говорят«i степеней свободы» ), то

(1.52)

Как говорят, «по пол kT на каждую степень свободы».

1.9. Растворенное вещество как идеальный газ

Представления об идеальном газе находят интересные приложения в объяснении осмотического давления , возникающего в растворе.

Пусть среди молекул растворителя находятся частицы какого-либо другого растворенного вещества. Как известно, частицы растворенного вещества стремятся занять весь доступный объем. Растворенное вещество расширяется совершенно так же, как расширяется газ ,чтобы занять предоставленный ему объем.

Подобно тому, как газ оказывает давление на стенки сосуда, растворенное вещество оказывает давление на ту границу, которая разделяет раствор от чистого растворителя . Такое дополнительное давление называетсяосмотическим давлением . Это давление можно наблюдать, если отделить раствор от чистого растворителяполунепроницаемой перегородкой , через которую легко проходит растворитель, но не проходит растворенное вещество (рис . 1.19 ).

Рис . 1.19. Возникновение осмотического давления в отсеке с растворенным веществом

Частицы растворенного вещества стремятся раздвинуть перегородку, и если перегородка мягкая, то она выпучивается. Если же перегородка жестко закреплена, то фактически смещается уровень жидкости, уровень раствора в отсеке с растворенным веществом повышается (см. рис . 1.19 ).

Подъем уровня раствора h будет продолжаться до тех пор, пока возникшее гидростатическое давлениеρgh (ρ- плотность раствора) не окажется равным осмотическому давлению. Имеется полное сходство между молекулами газа и молекулами растворенного вещества. И те, и другие находятся далеко друг от друга, и те, и другие движутся хаотически. Конечно, между молекулами растворенного вещества находится растворитель, а между молекулами газа ничего нет (вакуум), но это ведь не важно. Вакуум при выводе законов не использовался! Отсюда следует, чточастицы растворенного вещества в слабом растворе ведут себя так же, как молекулы идеального газа . Иначе говоря,осмотическое давление, оказываемое растворенным веществом ,равно давлению, которое производило бы это же вещество в газообразном состоянии в том же объеме и при той же температуре . Тогда получим, чтоосмотическое давление π пропорционально температуре и концентрации раствора (числу частицn в единице объема).

(1.53)

Этот закон называется законом Вант-Гоффа , формула (1.53 ) -формулой Вант-Гоффа .

Полное сходство закона Вант-Гоффа с уравнением Клапейрона–Менделеева для идеального газа очевидно.

Осмотическое давление, разумеется, не зависит от вида полупроницаемой перегородки или от рода растворителя. Любые растворы с одинаковой молярной концентрацией оказывают одинаковое осмотическое давление .

Сходство в поведении растворенного вещества и идеального газа обусловленно тем, что в разбавленном растворе частицы растворенного вещества практически не взаимодействуют между собой, как не взаимодействуют и молекулы идеального газа.

Величина осмотического давления часто довольно значительна. Например, если в литре раствора содержится 1 моль растворенного вещества, то по формуле Вант-Гоффа при комнатной температуре имеемπ ≈ 24 атм.

Если растворенное вещество при растворении разлагается на ионы (диссоциируется), то по формуле Вант-Гоффа

πV = NkT (1.54)

можно определить общее число N образовавшихся частиц - ионов обоих знаков и нейтральных (недиссоциированных) частиц. И, следовательно, можно узнать степень диссоциации вещества . Ионы могут быть сольватированы, но это обстоятельство не сказывается на справедливости формулы Вант-Гоффа.

Формулу Вант-Гоффа часто используют в химии для определения молекулярных масс белков и полимеров . Для этого к растворителю объемаV добавляютm грамм исследуемого вещества, измеряют давлениеπ. Из формулы

(1.55)

находят молекулярную массу.

УРОК

Тема . Температура – мера средней кинетической энергии движения молекул.

Цель: формировать знания о температуре как одном из термодинамических параметров и мере средней кинетической энергии движения молекул, температурных шкалах Кельвина и Цельсия и связи между ними, об из­мерении температуры с помощью термометров.

Тип урока: урок усвоения новых знаний.

Оборудование: термометр жидкостный демонстрационный.

Ход урока

              1. Организационный этап

                Актуализация опорных знаний

                1. Имеют ли газы собственный объем?

                  Имеют ли газы форму?

                  Образуют ли газы струи? текут ли?

                  Можно ли газы сжать?

                  Как расположены в газах молекулы? Как они двигаются?

                  Что можно сказать о взаимодействии молекул в газах?

Вопросы классу

1. Почему газы при высокой температуре можно считать идеальными?

( Чем выше температура газа, тем больше кинетическая энергия теплового движения молекул, а значит, газ более близок к идеальному .)

2. Почему при высоком давлении свойства реальных газов отличаются от свойств идеального? (С ростом давления уменьшается расстояние между молекулами газа и их взаимодействием уже нельзя пренебречь .)

              1. Сообщение темы, цели и задач урока

Сообщаем тему урока.

IV . Мотивация учебной деятельности

Почему важно изучать газы, уметь описывать процессы, которые в них происходят? Обоснуйте ответ, используя усвоенные знания по физике, собственный жизненный опыт.

V. Изучение нового материала

3. Температура как термодинамический параметр идеального газа. Состояние газа описывают с помощью определенных величин, которые называют параметрами состояния. Различают:

    1. микроскопические, т.е. характеристики собственно молекул, - размеры, массу, скорость, импульс, энергию;

      макроскопические, т.е. параметры газа как физического тела - температуру, давление, объем.

Молекулярно-кинетическая теория позволяет нам понять, что представляет собой физическая сущность такого сложного понятия, как температура.

Со словом «температура» вы знакомы с раннего детства. Теперь познакомимся с температурой как параметром.

Нам известно, что разные тела могут иметь разную температуру. Следовательно, температура характеризует внутреннее состояние тела. В результате взаимодействия двух тел с разной температурой, как свидетельствует опыт, их температуры спустя, некоторое время сравняются. Многочисленные опыты свидетельствуют о том, что температуры тел, находящихся в тепловом контакте, уравниваются, т.е. между ними устанавливается тепловое равновесие.

Тепловым или термодинамическим равновесием называют такое состояние, при котором все макроскопические параметры в системе сколь угодно долго остаются неизменными . Это означает, что в системе не меняются объем и давление, не изменяются агрегатные состояния вещества, концентрации веществ. Но микроскопические процессы внутри тела не прекращаются и при тепловом равновесии: меняются положения молекул, их скорости при столкновениях. В системе тел, находящейся в состоянии термодинамического равновесия, объемы и давления могут быть различными, а температуры обязательно одинаковы. Таким образом, температура характеризует состояние термодинамического равновесия изолированной системы тел .

Чем быстрее двигаются молекулы в теле, тем сильнее ощущение тепла при касании. Большая скорость движения молекул соответствует большей кинетической энергии. Следовательно, по величине температуры можно составить представление о кинетической энергии молекул.

Температура - это мера кинетической энергии теплового движения молекул .

Температура - скалярная величина; в СИ измеряется в Кель винах (К).

2 . Температурные шкалы. Измерение температуры

Температура измеряется с помощью термометров, действие которых основано на явлении термодинамического равновесия, т.е. термометр - это прибор для измерения температуры путем контакта с исследуемым телом. При изготовлении термометров разного типа учитывается зависимость от температуры разных физических явлений: теплового расширения, электрических и магнитных явлений и т.п.

Их действие основано на том факте, что при изменении температуры, изменяются и другие физические параметры тела, например, такие, как давление и объем.

В 1787 году Ж. Шарль из эксперимента установил прямую пропорциональную зависимость давления газа от температуры. Из опытов следовало, что при одинаковом нагревании давление любых газов изменяется одинаково. Использование этого экспериментального факта легло в основу создания газового термометра.

Различают такие виды термометров : жидкостные, термопары, газовые, термометры сопротивления.

Основные виды шкал:

В физике в большинстве случаев пользуются введенной английским ученым У. Кельвином абсолютной шкалой температур (1848 г.), которая имеет две основные точки.

Первая основная точка - 0 К, или абсолютный нуль.

Физический смысл абсолютного нуля: это температура, при которой прекращается тепловое движение молекул .

При абсолютном нуле молекулы поступательно не двигаются. Тепловое движение молекул непрерывно и бесконечно. Следовательно, абсолютный нуль температур при наличии молекул вещества недосягаем. Абсолютный нуль температур - это самая низкая температурная граница, верхней не существует.

Вторая основная точка - это точка, в которой вода существует во всех трех состояниях (твердом, жидком и газообразном), она названа тройной точкой.

В быту для измерения температуры используют другую температурную шкалу - шкалу Цельсия, названную в честь шведского астронома А.Цельсия и введенную им в 1742 г.

На шкале Цельсия есть две основные точки: 0°С (точка, в которой тает лед) и 100°С (точка, в которой кипит вода). Температура, которую определяют по шкале Цельсия, обозначается t . Шкала Цельсия имеет как положительные, так и отрицательные значения.

Пользуясь рисунком, проследим связь между температурами по шкалам Кельвина и Цельсия.

Цена деления на шкале Кельвина такая же, как и на шкале Цельсия:

ΔT = T 2 - T 1 =( t 2 +273) - ( t 1 +273) = t 2 - t 1 = Δt .

Итак, ΔT = Δt , т.е. изменение температуры по шкале Кельвина равно изменению температуры по шкале Цельсия.

Т K = t ° C + 273

0 К = -273°С

0°С =273 К

Задание классу .

Опишите жидкостный термометр как физический прибор по плану характеристики физического прибора.

Характеристика жидкостного термометра как физического прибора

    Измерение температуры.

    Запаянный стеклянный капилляр, в нижней части имеющий резервуар для жидкости, заполненный ртутью или подкрашенным спиртом. Капилляр присоединен к шкале и обычно помещен в стеклянный футляр.

    При увеличении температуры жидкость внутри капилляра расширяется и поднимается, при уменьшении температуры - опускается.

    Используется для изм . температуры воздуха, воды, тела человека и т.п.

    Диапазон температур, которые можно измерять с помощью жидкостных термометров, широк (ртутным от -35 до 75 °С, спиртовым от -80 до 70 °С). Недостатком является то, что при нагревании разные жидкости расширяются по-разному, при одинаковой температуре показания могут несколько отличаться.

3. Температура – мера средней кинетической энергии движения молекул

Опытным путем было установлено, что при постоянном объеме и температуре давление газа прямо пропорционально его концентрации. Объединяя экспериментально полученные зависимости давления от температуры и концентрации, получаем уравнение:

р = nkT , где - k=1,38×10 -23 Дж/К , коэффициент пропорциональности - постоянная Больцмана. Постоянная Больцмана связывает температуру со средней кинетической энергией движения молекул в веществе. Это одна из наиболее важных постоянных в МКТ. Температура прямо пропорциональна средней кинетической энергии теплового движения частиц вещества. Следовательно, температуру можно назвать мерой средней кинетической энергии частиц, характеризующей интенсивность теплового движения молекул. Этот вывод хорошо согласуется с экспериментальными данными, показывающими увеличение скорости частиц вещества с ростом температуры.

Рассуждения, которые мы проводили для выяснения физической сущности температуры, относятся к идеальному газу. Однако выводы, полученные нами, справедливы не только для идеального, но и для реальных газов. Справедливы они и для жидкостей и твердых тел. В любом состоянии температура вещества характеризует интенсивность теплового движения его частиц.

VII. Подведение итогов урока

Подводим итоги урока, оцениваем деятельность учащихся.

Домашнее задание

    1. Выучить теоретический материал по конспекту. § _____ стр. _____

Учитель высшей категории Л.А.Донец

Страница 5

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то