Первая элементарная частица открытая в физике. Классификация элементарных частиц

Для того чтобы объяснить свойства и поведение элементарных частиц, их приходится наделять, кроме массы, электрического заряда и типа, рядом дополнительных, характерных для них величин (квантовых чисел), о которых мы поговорим ниже.

Элементарные частицы обычно подразделяются на четыре класса . Помимо этих классов, предполагается существование ещё одного класса частиц – гравитонов (квантов гравитационного поля). Экспериментально эти частицы ещё не обнаружены.

Дадим краткую характеристику четырем классам элементарных частиц.

К одному из них относится только одна частица – фотон .

Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

Второй класс образуют лептоны , третий – адроны и, наконец, четвертый – калибровочные бозоны (табл. 2)

Таблица 2

Элементарные частицы

Лептоны

Калибровочные

бозоны

Адроны

n , p ,

гипероны

Барионные

резонансы

Мезонные

резонансы

Лептоны (греч. «лептос » – лёгкий) - частицы , участвующие в электромагнитных и слабых взаимодействиях . К ним относятся частицы, не обладающие сильным взаимодействием: электроны (), мюоны (), таоны (), а также электронные нейтрино (), мюонные нейтрино () и тау-нейтрино (). Все лептоны имеют спины, равные 1/2 , и следовательно являются фермионами . Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (т.е. мюоны и электроны), обладают также и электромагнитным взаимодействием. Нейтрино участвуют только в слабых взаимодействиях.

Адроны (греч. «адрос » – крупный, массивный) - частицы , участвующие в сильных , электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов и их подразделяют на барионы и мезоны .

Барионы - адроны , состоящие из трёх кварков (qqq ) и имеющие барионное число B = 1.

Класс барионов объединяет в себе нуклоны (p , n ) и нестабильные частицы с массой большей массы нуклонов, получившие название гиперонов (). Все гипероны обладают сильным взаимодействием, и следовательно активно взаимодействуют с атомными ядрами. Спин всех барионов равен 1/2 , так что барионы являются фермионами . За исключением протона, все барионы нестабильны. При распаде бариона, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявлений закона сохранения барионного заряда .

Мезоны - адроны , состоящие из кварка и антикварка () и имеющие барионное число B = 0.

Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежат -мезоны или пионы (), K-мезоны, или каоны (), и -мезоны. Массы и мезонов одинакова и равна 273,1 , 264,1 время жизни, соответственно, и с. Масса К-мезонов составляет 970 . Время жизни К-мезонов имеет величину порядка с. Масса эта-мезонов 1074 , время жизни порядка с. В отличие от лептонов, мезоны обладают не только слабым (и если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами .

Калибровочные бозоны - частицы , осуществляющие взаимодействие между фундаментальными фермионами (кварками и лептонами). Это частицы W + , W – , Z 0 и восемь типов глюонов g. Сюда же можно отнести и фотон γ.

Свойства элементарных частиц

Каждая частица описывается набором физических величин – квантовых чисел, определяющих её свойства. Наиболее часто употребляемые характеристики частиц следующие.

Масса частицы , m . Массы частиц меняются в широких пределах от 0 (фотон) до 90 ГэВ (Z -бозон). Z -бозон - наиболее тяжелая из известных частиц. Однако могут существовать и более тяжелые частицы. Массы адронов зависят от типов входящих в их состав кварков, а также от их спиновых состояний.

Время жизни , τ. В зависимости от времени жизни частицы делятся на стабильные частицы , имеющие относительно большое время жизни, и нестабильные .

К стабильным частицам относят частицы, распадающиеся по слабому или электромагнитному взаимодействию. Деление частиц на стабильные и нестабильные условно. Поэтому к стабильным частицам принадлежат такие частицы, как электрон, протон, для которых в настоящее время распады не обнаружены, так и π 0 -мезон, имеющий время жизни τ = 0.8×10 - 16 с.

К нестабильным частицам относят частицы, распадающиеся в результате сильного взаимодействия. Их обычно называют резонансами . Характерное время жизни резонансов - 10 - 23 -10 - 24 с.

Спин J . Величина спина измеряется в единицах ħ и может принимать 0, полуцелые и целые значения. Например, спин π-, К-мезонов равен 0. Спин электрона, мюона равен 1/2. Спин фотона равен 1. Существуют частицы и с большим значением спина. Частицы с полуцелым спином подчиняются статистике Ферми-Дирака, с целым спином - Бозе–Эйнштейна.

Электрический заряд q . Электрический заряд является целой кратной величиной от е = 1,6×10 - 19 Кл, называемой элементарным электрическим зарядом. Частицы могут иметь заряды 0, ±1, ±2.

Внутренняя четность Р . Квантовое число Р характеризует свойство симметрии волновой функции относительно пространственных отражений. Квантовое число Р имеет значение +1, -1.

Наряду с общими для всех частиц характеристиками, используют также квантовые числа, которые приписывают только отдельным группам частиц.

Квантовые числа : барионное число В , странность s , очарование (charm ) с , красота (bottomness или beauty ) b , верхний (topness ) t , изотопический спин I приписывают только сильновзаимодействующим частицам - адронам .

Лептонные числа L e , L μ , L τ . Лептонные числа приписывают частицам, образующим группу лептонов. Лептоны e , μ и τ участвуют только в электромагнитных и слабых взаимодействиях. Лептоны ν e , n μ и n τ участвуют только в слабых взаимодействиях. Лептонные числа имеют значения L e , L μ , L τ = 0, +1, -1. Например, e - , электронное нейтрино n e имеют L e = +l; , имеют L e = - l. Все адроны имеют .

Барионное число В . Барионное число имеет значение В = 0, +1, -1. Барионы, например, n , р , Λ, Σ, нуклонные резонансы имеют барионное число В = +1. Мезоны, мезонные резонансы имеют В = 0, антибарионы имеют В = -1.

Странность s . Квантовое число s может принимать значения -3, -2, -1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеют s = -l; K + - , K – - мезоны имеют s = + l.

Charm с . Квантовое число с с = 0, +1 и -1. Например, барион Λ + имеет с = +1.

Bottomness b . Квантовое число b может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие b = 0, +1, -1. Например, В + -мезон имеет b = +1.

Topness t . Квантовое число t может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние с t = +1.

Изоспин I . Сильновзаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях) - изотопические мультиплеты . Величина изоспина I определяет число частиц, входящих в один изотопический мультиплет, n и р составляет изотопический дуплет I = 1/2; Σ + , Σ - , Σ 0 , входят в состав изотопического триплета I = 1, Λ - изотопический синглет I = 0, число частиц, входящих в один изотопический мультиплет , 2I + 1.

G - четность - это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряжения с и изменения знака третьего компонента I изоспина. G- четность сохраняется только в сильных взаимодействиях.

Слово атом означает «неделимый». Оно было введено греческими философами для обозначения мельчайших частиц, из которых, согласно их представлению, состоит материя.

Физики и химики девятнадцатого века приняли этот термин для обозначения самых мелких известных им частиц. Хотя мы уже давно в состоянии «расщепить» атомы и неделимое перестало быть неделимым, тем не менее термин этот сохранился. Согласно нынешнему нашему представлению, атом состоит из мельчайших частиц, называемых нами элементарными частицами . Существуют также и другие элементарные частицы, не являющиеся фактически составной частью атомов. Обычно их получают при помощи мощных циклотронов, синхротронов и других ускорителей частиц, специально сконструированных для изучения этих частиц. Они также возникают при прохождении космических лучей через атмосферу. Эти элементарные частицы распадаются спустя несколько миллионных долей секунды, а часто за еще более короткий промежуток времени после своего появления. В результате распада они либо видоизменяются, превращаясь в другие элементарные частицы, либо выделяют энергию в форме излучения.

Изучение элементарных частиц сосредоточивается на все возрастающем числе недолго живущих элементарных частицах. Хотя эта проблема имеет огромное значение, в частности, потому, что связана с самыми фундаментальными законами физики, тем не менее исследование частиц в настоящее время проводится почти в отрыве от других отраслей физики. По этой причине мы ограничимся рассмотрением лишь тех частиц, которые являются постоянными компонентами наиболее распространенных материалов, а также некоторых частиц, очень близко к ним примыкающих. Первой из элементарных частиц, открытых в конце девятнадцатого века, был электрон, ставший затем исключительно полезным слугой. В радиолампах поток электронов движется в вакууме; и именно посредством регулировки этого потока усиливаются входящие радиосигналы и превращаются в звук или шум. В телевизоре электронный луч служит в качестве пера, которое мгновенно и точно копирует на экране приемника то, что видит камера передатчика. В обоих этих случаях электроны движутся в вакууме так, чтобы по возможности ничто не мешало их движению. Еще одним полезным свойством является их способность, проходя через газ, заставлять его светиться. Таким образом, давая возможность электронам проходить через стеклянную трубку, наполненную газом под определенным давлением, мы используем это явление для получения неонового света, применяемого ночью для освещения крупных городов. А вот еще одна встреча с электронами: блеснула молния, и мириады электронов, пробиваясь через толщу воздуха, создают раскатистый звук грома.

Однако в земных условиях имеется сравнительно небольшое число электронов, могущих свободно двигаться, как это мы видели в предыдущих примерах. Большинство из них надежно связаны в атомах. Поскольку ядро атома заряжено положительно, оно притягивает к себе отрицательно заряженные электроны, заставляя их удерживаться на орбитах, находящихся сравнительно близко от ядра. Атом обычно состоит из ядра и некоторого числа электронов. Если электрон покидает атом, его, как правило, немедленно замещает другой электрон, который атомное ядро с большой силой притягивает к себе из своего ближайшего окружения.

Как же выглядит этот замечательный электрон? Никто его не видел и никогда не увидит; и тем не менее мы знаем его свойства настолько хорошо, что можем предсказать со всеми подробностями, как он будет вести себя в самых различных ситуациях. Мы знаем его массу (его «вес») и его электрический заряд. Мы знаем, что чаще всего он ведет себя так, как будто бы перед нами очень мелкая частица , в других же случаях он обнаруживает свойства волны . Исключительно абстрактная, но в то же самое время очень точная теория электрона была предложена в законченном виде несколько десятилетий тому назад английским физиком Дираком. Эта теория дает нам возможность определить, при каких обстоятельствах электрон будет, больше сходен с частицей, а при каких будет преобладать его волновой характер. Такая двойственная природа - частица и волна - затрудняет возможность дать четкую картину электрона; следовательно, теория, учитывающая обе эти концепции и тем не менее дающая законченное описание электрона, должна быть очень абстрактной. Но было бы неразумным ограничивать описание такого замечательного явления, как электрон, столь земными образами, как горошины и волны.

Одна из посылок теории Дирака об электроне заключалась в том, что должна существовать элементарная частица, обладающая такими же свойствами, как электрон, за исключением лишь того, что заряжена она положительно, а не отрицательно. И действительно, такой двойник электрона был обнаружен и назван позитроном . Он входит в состав космических лучей, а также возникает в результате распада некоторых радиоактивных веществ. В земных условиях жизнь позитрона коротка. Как только он оказывается по соседству с электроном, а случается это во всех веществах, электрон и позитрон «истребляют» друг друга; положительный электрический заряд позитрона нейтрализует отрицательный заряд электрона. Поскольку согласно теории относительности масса является формой энергии и поскольку энергия «неразрушима», энергия, представленная объединенными массами электрона и позитрона, должна быть каким-то образом сохранена. Эту задачу выполняет фотон (квант света), или обычно два фотона, которые излучаются в результате этого рокового столкновения; их энергия равна суммарной энергии электрона и позитрона.

Мы знаем также, что происходит и обратный процесс, Фотон может при определенных условиях, например, пролетая поблизости от ядра атома, сотворить «из ничего» электрон и позитрон. Для такого сотворения он должен обладать энергией, по меньшей мере равной энергии, соответствующей суммарной массе электрона и позитрона.

Стало быть, элементарные частицы не являются вечными или постоянными. И электроны и позитроны могут появляться и исчезать; однако энергия и результирующие электрические заряды сохраняются.

Исключая электрон, элементарной частицей, известной нам гораздо раньше любой другой частицы, является не позитрон, встречающийся сравнительно редко, а протон - ядро атома водорода. Как и позитрон, заряжен он положительно, но масса его примерно в две тысячи раз превосходит массу позитрона или электрона. Подобно этим частицам, протон иногда проявляем волновые свойства, однако лишь в исключительно особых условиях. То, что его волновая природа менее ярко выражена, фактически является прямым следствием обладания им гораздо большей массой. Волновая природа, характерная для всей материи, не приобретает для нас важного значения до тех пор, пока мы не начинаем работать с исключительно легкими частицами, такими, как электроны.

Протон - очень распространенная частица, Атом водорода состоит из протона, являющегося его ядром, и электрона, вращающегося вокруг него по орбите. Протон входит также в состав всех других атомных ядер.

Физики-теоретики предсказывали, что у протона, подобно электрону, имеется античастица. Открытие отрицательного протона или антипротона , обладающего теми же самыми свойствами, что и протон, но заряженного отрицательно, подтвердило это предсказание. Столкновение антипротона с протоном «истребляет» их обоих так же, как и в случае столкновения электрона и позитрона.

Другая элементарная частица, нейтрон , обладает почти такой же массой, как и протон, но электрически нейтральна (без электрического заряда вообще). Ее открытие в тридцатых годах нашего века - примерно одновременно с открытием позитрона - явилось исключительно важным для ядерной физики. Нейтрон входит в состав всех атомных ядер (за исключением, разумеется, обычного ядра атома водорода, который является просто свободным протоном); разрушаясь, атомное ядро выделяет один (или более) нейтрон. Взрыв атомной бомбы происходит благодаря нейтронам, высвобождающимся из ядер урана или плутония.

Поскольку протоны и нейтроны вместе образуют атомные ядра, и те и другие называются нуклонами, Спустя некоторое время свободный нейтрон превращается в протон и электрон.

Нам знакома еще одна частица, называемая антинейтроном , которая, подобно нейтрону, электрически нейтральна. Она обладает многими свойствами нейтрона, однако одно из коренных отличий заключается в том, что антинейтрон распадается на антипротон и электрон. Сталкиваясь, нейтрон и антинейтрон уничтожают друг друга,

Фотон , или световой квант, исключительно интересная элементарная частица. Желая почитать книгу, мы включаем электрическую лампочку. Так вот, включенная лампочка генерирует огромное количество фотонов, которые устремляются к книге, так же как и во все другие уголки комнаты, со скоростью света. Некоторые из них, ударяясь о стены, тут же погибают, другие вновь и вновь ударяются и отскакивают от стенок других предметов, однако спустя менее чем одну миллионную долю секунды с момента появления все они погибают, за исключением лишь немногих, которым удается вырваться через окно и ускользнуть в пространство. Энергия, необходимая для генерирования фотонов, поставляется электронами, протекающими через включенную лампочку; погибая, фотоны отдают эту энергию книге или другому предмету, нагревая его, или глазу, вызывая стимуляцию зрительных нервов.

Энергия фотона, а следовательно, и его масса не -остаются неизменными: существуют очень легкие фотоны наряду с очень тяжелыми. Фотоны, дающие обычный свет, очень легки, их масса составляет всего лишь несколько миллионных долей массы электрона. Другие фотоны обладают массой примерно такой же, как масса электрона, и даже гораздо большей. Примерами тяжелых фотонов являются рентгеновские и гамма-лучи.

Вот общее правило: чем легче элементарная частица, тем выразительнее ее волновая природа. Самые тяжелые элементарные частицы - протоны - выявляют сравнительно слабые волновые характеристики; несколько сильнее они у электронов; самые сильные - у фотонов. В самом деле, волновая природа света была открыта намного раньше, чем его корпускулярные характеристики. Мы знали, что свет есть не что иное, как движение электромагнитных волн, с тех пор как Максвелл Продемонстрировал это на протяжении второй половины прошлого века, но именно Планк и Эйнштейн на заре двадцатого века открыли, что свет имеет и корпускулярные характеристики, что он иногда излучается в виде отдельных «квантов», или, другими словами, в виде потока фотонов. Не приходится отрицать, что трудно объединить и слить воедино в нашем сознании эти две явно несхожие концепции природы света; но мы можем сказать, что подобно «двойственной природе» электрона наше представление о таком неуловимом явлении, каковым является свет, должно быть очень абстрактным. И только когда мы хотим выразить наше представление в грубых образах, мы должны иногда уподоблять свет потоку частиц, фотонов, или же волновому движению электромагнитной природы.

Существует зависимость между корпускулярной природой явления и его «волновыми» свойствами. Чем тяжелее частица, тем короче соответствующая ей длина волны; чем длиннее длина волны, тем легче соответствующая частица. Рентгеновские лучи, состоящие из очень тяжелых фотонов, имеют соответственно очень короткую длину волны. Красный свет, характеризующийся большей длиной волны по сравнению с синим светом, состоит из фотонов более легких по сравнению с фотонами, несущими синий свет. Самые длинные электромагнитные волны из всех существующих - радиоволны - состоят из мельчайших фотонов. Эти волны ни малейшим образом не проявляют свойств частиц, их волновая природа является целиком преобладающей характеристикой.

И наконец, самой мелкой из всех малых элементарных частиц является нейтрино . Оно лишено электрического заряда, и если у него и есть какая-либо масса, то она близка к нулю. С некоторым преувеличением мы можем сказать, что нейтрино просто лишено свойств.

Наше познание элементарных частиц является современной границей физики. Атом был открыт в девятнадцатом веке, и ученые того времени обнаружили все возрастающее число различных видов атомов; подобным же образом сегодня мы находим все больше и больше элементарных частиц. И хотя было доказано, что атомы состоят из элементарных частиц, мы не можем ожидать, что по аналогии будет, найдено, что- элементарные частицы состоят из еще более мелких частиц. Проблема, стоящая перед нами сегодня, совсем иная, и нет ни малейших признаков, указывающих на то, что мы сможем расщепить элементарные частицы. Скорее следует надеяться на то, что будет показана, что все элементарные частицы являются проявлением одного еще более фундаментального явления. И если это оказалось бы возможным установить, мы бы сумели понять все свойства элементарных частиц; смогли бы подсчитать их массы и способы их взаимодействия. Было сделано много попыток подойти к разрешению этой проблемы, являющейся одной из самых важных проблем физики.


Элементарные частицы , в узком смысле - частицы, которые нельзя считать состоящими из других частиц. В современной физике термин "элементарные частицы " используют в более широком смысле: так называют мельчайшие частицы материи, подчиненные условию, что они не являются и атомами (исключение составляет протон); иногда по этой причине элементарные частицы называют субъядерными частицами. Большая часть таких частиц (а их известно более 350) являются составными системами.

Элементарные частицы участвуют в электромагнитном, слабом, сильном и гравитационном взаимодействиях. Из-за малых масс элементарных частиц их гравитационное взаимодействие обычно не учитывается. Все элементарные частицы разделяют на три основные группы. Первую составляют так называемые бозоны - переносчики электрослабого взаимодействия. Сюда относится фотон, или квант электромагнитного излучения. Масса покоя фотона равна нулю, поэтому скорость распространения электромагнитных волн в (в т. ч. световых волн) представляет собой предельную скорость распространения физического воздействия и является одной из фундаментальных физических постоянных; принято, что с = (299792458±1,2) м/с.

Вторая группа элементарных частиц - лептоны, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов: , электронное нейтрино, мюон, мюонное нейтрино, тяжелый τ-лептон и соответствующее нейтрино. Электрон (символ e) считается материальным носителем наименьшей массы в природе m e , равной 9,1×10 -28 г (в энергетических единицах ≈0,511 МэВ) и наименьшего отрицательного электрического заряда e = 1,6×10 -19 Кл. Мюоны (символ μ -) - частицы с массой около 207 масс электрона (105,7 МэВ) и электрическим зарядом, равным заряду электрона; тяжелый τ-лептон имеет массу около 1,8 ГэВ. Соответствующие этим частицам три типа нейтрино - электронное (символ ν e), мюонное (символ ν μ) и τ-нейтрино (символ ν τ) - легкие (возможно, безмассовые) электрически нейтральные частицы.

Каждому из лептонов соответствует , имеющая те же значения массы, спина и других характеристик, но отличающаяся знаком электрического заряда. Существуют (символ e +) - античастица по отношению к , положительно заряженный (символ μ +) и три типа антинейтрино (символы ), которым приписывают противоположный знак особого квантового числа, называемого лептонным зарядом (см. ниже).

Третья группа элементарных частиц - адроны, они участвуют в сильном, слабом и электромагнитном взаимодействиях. Адроны представляют собой "тяжелые" частицы с массой, значительно превышающей массу электрона. Это наиболее многочисленная группа элементарных частиц . Адроны делятся на барионы - частицы со спином ½ћ, мезоны - частицы с целочисленным спином (0 или 1); а также так называемые резонансы - короткоживущие возбужденные состояния адронов. К барионам относят протон (символ p) - ядро атома водорода с массой, в ~ 1836 раз превышающей m e и равной 1,672648×10 -24 г (≈938,3 МэВ), и положительным электрическим зарядом, равным заряду нейтрон (символ n) - электрически нейтральная частица, масса которой немного превышает массу протона. Из протонов и нейтронов построены все , именно сильное взаимодействие обусловливает связь этих частиц между собой. В сильном взаимодействии протон и нейтрон имеют одинаковые свойства и рассматриваются как два квантовых состояния одной частицы - нуклона с изотопическим спином ½ћ (см. ниже). Барионы включают и гипероны - элементарные частицы с массой больше нуклонной: Λ-гиперон имеет массу 1116 МэВ, Σ-гиперон - 1190 МэВ, Θ-гиперон - 1320 МэВ, Ω-гиперон - 1670 МэВ. Мезоны имеют массы, промежуточные между массами протона и электрона (π-мезон, K -мезон). Существуют мезоны нейтральные и заряженные (с положительным и отрицательным элементарным электрическим зарядом). Все мезоны по своим статистическим свойствам относятся к бозонам.

Основные свойства элементарных частиц

Каждая элементарная частица описывается набором дискретных значений физических величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, спин, электрический заряд.

В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными (в пределах точности современных измерений) являются: электрон (время жизни более 5×10 21 лет), протон (более 10 31 лет), фотон и нейтрино. К квазистабильным относятся частицы, распадающиеся вследствие электромагнитного и слабого взаимодействий, их времена жизни более 10 -20 с. Резонансы распадаются за счет сильного взаимодействия, их характерные времена жизни 10 -22 - 10 -24 с.

Внутренними характеристиками (квантовыми числами) элементарных частиц являются лептонный (символ L ) и барионный (символ В )заряды; эти числа считаются строго сохраняющимися величинами для всех типов фундаментальных взаимодействий. Для лептонных и их античастиц L имеют противоположные знаки; для барионов В = 1, для соответствующих античастиц В =-1.

Для адронов характерно наличие особых квантовых чисел: "странности", "очарования", "красоты". Обычные (нестранные) адроны - протон, нейтрон, π-мезоны. Внутри разных групп адронов имеются семейства частиц, близких по массе и со сходными свойствами по отношению к сильному взаимодействию, но с различными значениями электрического заряда; простейший пример - протон и нейтрон. Общее квантовое число для таких элементарных частиц - так называемый изотопический спин, принимающий, как и обычный спин, целые и полуцелые значения. К особым характеристикам адронов относится и внутренняя четность, принимающая значения ±1.

Важное свойство элементарных частиц - их способность к взаимопревращениям в результате электромагнитных или других взаимодействий. Один из видов взаимопревращений - так называемое рождение пары, или образование одновременно частицы и античастицы (в общем случае - образование пары элементарныех частиц с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных пар e - e + , мюонных пар μ + μ - новых тяжелых частиц при столкновениях лептонов, образование из кварков cc - и bb -состояний (см. ниже). Другой вид взаимопревращений элементарных частиц - аннигиляция пары при столкновениях частиц с образованием конечного числа фотонов (γ-квантов). Обычно образуются 2 фотона при нулевом суммарном спине сталкивающихся частиц и 3 фотона - при суммарном спине, равном 1 (проявление закона сохранения зарядовой четности).

При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - позитрония e - e + и мюония μ + e - . Эти нестабильные системы, часто называемые водородоподобными . Их время жизни в веществе в большой степени зависит от свойств вещества, что позволяет использовать водородоподобные атомы для изучения структуры конденсированного вещества и кинетики быстрых химических реакций (см. Мезонная химия , Ядерная химия).

Кварковая модель адронов

Детальное рассмотрение квантовых чисел адронов с целью их классификации позволило сделать вывод о том, что странные адроны и обычные адроны в совокупности образуют объединения частиц с близкими свойствами, названные унитарными мультиплетами. Числа входящих в них частиц равны 8 (октет) и 10 (декуплет). Частицы, входящие в состав унитарного мультиплета, имеют одинаковые и внутреннюю четность, но различаются значениями электрического заряда (частицы изотопического мультиплета) и странности. С унитарными группами связаны свойства симметрии, их обнаружение явилось основой для вывода о существовании особых структурных единиц, из которых построены адроны, - кварков. Считают, что адроны представляют собой комбинации 3 фундаментальных частиц со спином ½: n -кварков, d -кварков и s -кварков. Так, мезоны составлены из кварка и антикварка, барионы - из 3 кварков.

Допущение, что адроны составлены из 3 кварков, было сделано в 1964 (Дж.Цвейг и независимо от него М.Гелл-Ман). В дальнейшем в модель строения адронов (в частности, для того чтобы не возникало противоречия с принципом Паули) были включены еще 2 кварка - "очарованный" (с ) и "красивый" (b ), а также введены особые характеристики кварков - "аромат" и "цвет". Кварки, выступающие как составные части адронов, в свободном состоянии не наблюдались. Все многообразие адронов обусловлено различными сочетаниями n -, d -, s -, с - и b -кварков, образующих связные состояния. Обычным адронам (протону, нейтрону, π-мезонам) соответствуют связные состояния, построенные из n - и d -кварков. Наличие в адроне наряду с n - и d -кварками одного s- , с - или b -кварка означает, что соответствующий адрон - "странный", "очарованный" или "красивый".

Кварковая модель строения адронов подтвердилась в результате экспериментов, проведенных в конце 60-х - начале 70-х гг. XX в. Кварки фактически стали рассматриваться как новые элементарные частицы - истинно элементарные частицы для адронной формы материи. Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный характер и дает основания предполагать, что они являются теми элементарными частицами , которые замыкают цепь структурных составляющих вещества. Существуют теоретические и экспериментальные доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т.е. для отделения кварков друг от друга требуется бесконечно большая энергия или, иначе говоря, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц вещества. Возможно, что кварки выступают как последняя ступень дробления материи.

Краткие исторические сведения

Первой открытой элементарной частицей был электрон - носитель отрицательного электрического заряда в атомах (Дж.Дж.Томсон, 1897). В 1919 Э.Резерфорд обнаружил среди частиц, выбитых из атомных ядер, протоны. Нейтроны открыты в 1932 Дж.Чедвиком. В 1905 А.Эйнштейн постулировал, что электромагнитное излучение является потоком отдельных квантов (фотонов) и на этой основе объяснил закономерности фотоэффекта. Существование как особой элементарной частицы впервые предложил В.Паули (1930); электронное

Мало кто не знает такого понятия как «электрон», а ведь именно он и означает «элементарная частица». Конечно, большинство людей слабо представляют, что это и зачем оно нужно. По телевизору, в книгах, в газетах и журналах эти частицы изображаются в виде маленьких точек или шариков. Из-за этого непросвещенные люди считают, что форма частиц и в самом деле шарообразна, и что они свободно летают, взаимодействуют, сталкиваются и т.д. Но такое суждение в корне неверно. Понятие элементарной частицы крайне сложное для осознания, но никогда не поздно постараться приобрести хотя бы весьма приблизительное представление о сущности этих частиц.

В начале прошедшего века ученые всерьез озадачились тем, почему электрон не падает на так как, согласно Ньютоновской механике, при отдаче всей своей энергии, он должен попросту упасть на ядро. К удивлению, этого не происходит. Как это объяснить?

Дело в том, что физика в своем классическом толковании и элементарная частица - вещи малосовместимые. Она не подчиняется никаким законам обычной физики, так как действует согласно принципам Основополагающим принципом при этом является неопределенность. Он говорит, что невозможно точно и одновременно определить две взаимосвязанные величины. Чем в большей мере определена первая из них, тем меньше можно определить вторую. Из этого определения следуют квантовые корреляции, корпускулярно-волновой дуализм, волновая функция и многое другое.

Первый важный фактор - это неопределенность координаты-импульса. Исходя из основ классической механики можно вспомнить, что понятия импульса и траектории тела неразделимы и всегда четко определяются. Попробуем перенести эту закономерность в микроскопический мир. К примеру, элементарная частица имеет точный импульс. Тогда при попытке определить траекторию передвижения мы столкнемся в неопределимостью координаты. Это значит, что электрон обнаруживается сразу во всех точках небольшого объема пространства. Если постараться сосредоточиться именно на траектории его движения, то импульс приобретает размытое значение.

Из этого следует, что как бы ни старались определить какую-либо конкретную величину, вторая сразу же становится неопределенной. Этот принцип заложен в основу волнового свойства частиц. Электрон не имеет четкой координаты. Можно сказать, что он одновременно расположен во всех точках пространства, которое ограничено длиной волны. Такое представление позволяет нам более четко понять, что представляет собой элементарная частица.

Примерно такая же неопределенность возникает в соотношении энергия-время. Частица постоянно взаимодействует, даже при наличии Такое взаимодействие длится на протяжении некоторого времени. Если представить, что данный показатель более-менее определен, то энергия при этом становится неопределимой. Это нарушает принятые в заложенных небольших промежутках.

Представленная закономерность порождает низкоэнергетические частицы - кванты фундаментальных полей. Такое поле представляет собой не непрерывную субстанцию. Оно состоит из мельчайших частиц. Взаимодействие между ними обеспечивается благодаря испусканию фотонов, которые поглощаются другими частицами. Это поддерживает уровень энергии и образуются стабильные элементарные частицы, которые не могут упасть на ядро.

Элементарные частицы по сути своей неразделимы, хотя отличаются друг от друга своей массой и определенными характеристиками. Поэтому были разработаны определенные классификации. К примеру, по типу взаимодействия можно выделить лептоны и адроны. Адроны, в свою очередь, делятся на мезоны, которые состоят из двух кварков, и барионы, в составе которых имеется три кварка. Наиболее известные барионы - это нейтроны и протоны.

Элементарные частицы и их свойства позволяют выделить еще два класса: бозоны (с целочисленным и нулевым спином), фермионы (с полуцелым спином). Каждая частица имеет свою античастицу с противоположными характеристиками. Устойчивыми являются только протоны, лептоны и нейтроны. Все другие частицы подвержены распаду и превращаются в стабильные частички.

Открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются по экспоненциальному закону с постоянной времени от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды (от 10 −24 до 10 −22 с для резонансов).

Строение и поведение элементарных частиц изучается физикой элементарных частиц .

Все элементарные частицы подчиняются принципу тождественности (все элементарные частицы одного вида во Вселенной полностью одинаковы по всем своим свойствам) и принципу корпускулярно-волнового дуализма (каждой элементарной частице соответствует волна де-Бройля).

Все элементарные частицы обладают свойством взаимопревращаемости, являющегося следствием их взаимодействий: сильного, электромагнитного, слабого, гравитационного. Взаимодействия частиц вызывают превращения частиц и их совокупностей в другие частицы и их совокупности, если такие превращения не запрещены законами сохранения энергии , импульса, момента количества движения, электрического заряда, барионного заряда и др.

Основные характеристики элементарных частиц: масса, спин, электрический заряд, время жизни , чётность, G-чётность, магнитный момент, барионный заряд, лептонный заряд, странность, изотопический спин, CP-чётность, зарядовая чётность.

Энциклопедичный YouTube

    1 / 5

    ✪ Элементарные частицы

    ✪ CERN: Стандартная модель физики элементарных частиц

    ✪ Урок 473. Элементарные частицы. Позитрон. Нейтрино

    ✪ Кирпичики вселенной: Элементарные частицы из которых состоит мир. Лекция профессора Дэвида Тонга.

    ✪ Мир элементарных частиц (рассказывает академик Валерий Рубаков)

    Субтитры

Классификация

По времени жизни

  • Стабильные элементарные частицы - частицы, имеющие бесконечно большое время жизни в свободном состоянии (протон , электрон , нейтрино , фотон , гравитон и их античастицы).
  • Нестабильные элементарные частицы - частицы, распадающиеся на другие частицы в свободном состоянии за конечное время (все остальные частицы).

По массе

Все элементарные частицы делятся на два класса:

  • Безмассовые частицы - частицы с нулевой массой (фотон , глюон , гравитон и их античастицы).
  • Частицы с ненулевой массой (все остальные частицы).

По величине спина

Все элементарные частицы делятся на два класса:

По видам взаимодействий

Элементарные частицы делятся на следующие группы:

Составные частицы

  • Адроны - частицы, участвующие во всех видах фундаментальных взаимодействий . Они состоят из кварков и подразделяются, в свою очередь, на:
    • мезоны - адроны с целым спином , то есть являющиеся бозонами ;
    • барионы - адроны с полуцелым спином, то есть фермионы . К ним, в частности, относятся частицы, составляющие ядро атома , - протон и нейтрон .

Фундаментальные (бесструктурные) частицы

  • Лептоны - фермионы, которые имеют вид точечных частиц (то есть не состоящих ни из чего) вплоть до масштабов порядка 10 −18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны , мюоны , тау-лептоны) и не наблюдалось для нейтрино . Известны 6 типов лептонов.
  • Кварки - дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  • Калибровочные бозоны - частицы, посредством обмена которыми осуществляются взаимодействия:
    • фотон - частица, переносящая электромагнитное взаимодействие ;
    • восемь глюонов - частиц, переносящих сильное взаимодействие ;
    • три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие ;
    • гравитон - гипотетическая частица, переносящая гравитационное взаимодействие . Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц .

Размеры элементарных частиц

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10 −15 м , что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц - калибровочных бозонов, кварков и лептонов - в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10 −18 м ) (см. пояснение ). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно может оказаться планковской длиной , равной 1,6·10 −35 м).

Следует отметить, однако, что размер элементарной частицы является достаточно сложной концепцией, не всегда согласующейся с классическими представлениями. Во-первых, принцип неопределённости не позволяет строго локализовать физическую частицу. Волновой пакет , представляющий частицу как суперпозицию точно локализованных квантовых состояний , всегда имеет конечные размеры и определённую пространственную структуру, причём размеры пакета могут быть вполне макроскопическими - например, электрон в эксперименте с интерференцией на двух щелях «чувствует» обе щели интерферометра, разнесённые на макроскопическое расстояние. Во-вторых, физическая частица меняет структуру вакуума вокруг себя, создавая «шубу» из кратковременно существующих виртуальных частиц - фермион-антифермионных пар (см. Поляризация вакуума) и бозонов-переносчиков взаимодействий. Пространственные размеры этой области зависят от калибровочных зарядов , которыми обладает частица, и от масс промежуточных бозонов (радиус оболочки из массивных виртуальных бозонов близок к их комптоновской длине волны , которая, в свою очередь, обратно пропорциональна их массе). Так, радиус электрона с точки зрения нейтрино (между ними возможно только слабое взаимодействие) примерно равен комптоновской длине волны W-бозонов , ~3×10 −18 м , а размеры области сильного взаимодействия адрона определяются комптоновской длиной волны легчайшего из адронов, пи-мезона (~10 −15 м ), выступающего здесь как переносчик взаимодействия.

История

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи . Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, то есть не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков .

Таким образом, физики продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) применяется термин «фундаментальные  частицы» .

В активно разрабатываемой примерно с середины 1980-х теории струн предполагается, что элементарные частицы и их взаимодействия являются следствиями различных видов колебаний особо малых «струн».

Стандартная модель

Стандартная модель элементарных частиц включает в себя 12 ароматов фермионов, соответствующие им античастицы, а также калибровочные бозоны (фотон , глюоны , W - и Z -бозоны), которые переносят взаимодействия между частицами, и обнаруженный в 2012 году бозон Хиггса , отвечающий за наличие инертной массы у частиц. Однако Стандартная модель в значительной степени рассматривается скорее как теория временная, а не действительно фундаментальная, поскольку она не включает в себя гравитацию и содержит несколько десятков свободных параметров (массы частиц и т. д.), значения которых не вытекают непосредственно из теории. Возможно, существуют элементарные частицы, которые не описываются Стандартной моделью - например, такие, как гравитон (частица, переносящая гравитационные силы) или суперсимметричные партнёры обычных частиц. Всего модель описывает 61 частицу .

Фермионы

12 ароматов фермионов разделяются на 3 семейства (поколения) по 4 частицы в каждом. Шесть из них - кварки . Другие шесть - лептоны , три из которых являются нейтрино , а оставшиеся три несут единичный отрицательный заряд: электрон , мюон и тау-лептон .

Поколения частиц
Первое поколение Второе поколение Третье поколение
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то