Формула сопротивления с температурой. Закон джоуля-ленца в классической электронной теории

Одна из характеристик любого проводящего электрический ток материала - это зависимость сопротивления от температуры. Если ее изобразить в виде графика на где по горизонтальной оси отмечаются промежутки времени (t), а по вертикальной - значение омического сопротивления (R), то получится ломаная линия. Зависимость сопротивления от температуры схематично состоит из трех участков. Первый соответствует небольшому нагреву - в этом время сопротивление изменяется очень незначительно. Так происходит до определенного момента, после которого линия на графике резко идет вверх - это второй участок. Третья, последняя составляющая - это прямая, уходящая вверх от точки, на которой остановился рост R, под относительно небольшим углом к горизонтальной оси.

Физический смысл данного графика следующий: зависимость сопротивления от температуры у проводника описывается простым до тех пор, пока величина нагрева не превысит какое-то значение, характерное именно для данного материала. Приведем абстрактный пример: если при температуре +10°C сопротивление вещества составляет 10 Ом, то до 40°C значение R практически не изменится, оставаясь в пределах погрешности измерений. Но уже при 41°C возникнет скачок сопротивления до 70 Ом. Если же дальнейший рост температуры не прекратится, то на каждый последующий градус придутся дополнительные 5 Ом.

Данное свойство широко используется в различных электротехнических устройствах, поэтому закономерно привести данные по меди как одному из самых распространенных материалов в Так, для медного проводника нагрев на каждый дополнительный градус приводит к росту сопротивления на полпроцента от удельного значения (можно найти в справочных таблицах, приводится для 20°C, 1 м длины сечением 1 кв.мм).

При возникновении в металлическом проводнике появляется электрический ток - направленное перемещение элементарных частиц, обладающих зарядом. Ионы, находящиеся в узлах металла, не в состоянии долго удерживать электроны на своих внешних орбитах, поэтому они свободно перемещаются по всему объему материала от одного узла к другому. Это хаотичное движение обусловлено внешней энергией - теплом.

Хотя факт перемещения налицо, оно не является направленным, поэтому не рассматривается в качестве тока. При появлении электрического поля электроны ориентируются в соответствии с его конфигурацией, формируя направленное движение. Но так как тепловое воздействие никуда не исчезло, то хаотично перемещающиеся частицы сталкиваются с направленными полем. Зависимость сопротивления металлов от температуры показывает величину помех прохождению тока. Чем больше температура, тем выше R проводника.

Очевидный вывод: снижая степень нагрева, можно уменьшить и сопротивление. (около 20°K) как раз и характеризуется существенным снижением теплового хаотичного движения частиц в структуре вещества.

Рассматриваемое свойство проводящих материалов нашло широкое применение в электротехнике. Например, зависимость сопротивления проводника от температуры используется в электронных датчиках. Зная ее значение для какого-либо материала, можно изготовить терморезистор, подключить его к цифровому или аналоговому считывающему устройству, выполнить соответствующую градуировку шкалы и использовать в качестве альтернативы В основе большинства современных термодатчиков заложен именно такой принцип, ведь надежность выше, а конструкция проще.

Кроме того, зависимость сопротивления от температуры дает возможность рассчитывать нагрев обмоток электродвигателей.

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

  1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
  2. изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

\(~\rho_t = \rho_0 (1 + \alpha t) ,\) \(~R_t = R_0 (1 + \alpha t) ,\)

где ρ 0 , ρ t - удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R 0 , R t - сопротивления проводника при 0 °С и t °С, α - температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Температурный коэффициент сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

\(~\mathcal h \alpha \mathcal i = \frac{1 \cdot \Delta \rho}{\rho \Delta T} ,\)

где \(~\mathcal h \alpha \mathcal i\) - среднее значение температурного коэффициента сопротивления в интервале ΔΤ .

Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. У чистых металлов α = 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение ρ происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.

Для растворов электролитов α < 0, например, для 10%-ного раствора поваренной соли α = -0,02 К -1 . Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.

Формулы зависимости ρ и R от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором α = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.

Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.

При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости . Металл переходит в сверхпроводящее состояние.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.

Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 256-257.

> Зависимость сопротивления от температуры

Узнайте, как сопротивление зависит от температуры : сравнение зависимости сопротивления материалов и удельного сопротивления от температуры, полупроводник.

Сопротивление и удельное сопротивление основываются на температуре, причем это несет линейный характер.

Задача обучения

  • Сравните температурную зависимость удельного и обычного сопротивления при больших и малых колебаниях.

Основные пункты

  • При перемене температуры на 100°C удельное сопротивление (ρ) изменяется с ΔT как: p = p 0 (1 + αΔT), где ρ 0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления.
  • При серьезных изменениях температуры заметно нелинейное изменение удельного сопротивления.
  • Сопротивление объекта выступает прямо пропорциональным удельному, поэтому демонстрирует такую же температурную зависимость.

Термины

  • Полупроводник – вещество с электрическими свойствами, которые характеризируют его как хорошего проводника или изолятора.
  • Температурный коэффициент удельного сопротивления – эмпирическая величина (α), описывающая изменение сопротивления или удельного сопротивления с температурным показателем.
  • Удельное сопротивление – степень, с которой материал сопротивляется электрическому потоку.

Сопротивление материалов основывается на температуре, поэтому получается проследить зависимость удельного сопротивления от температуры. Некоторые способны стать сверхпроводниками (нулевое сопротивление) при очень низких температурах, а другие – при высоких. Скорость вибрации атомов повышается на больших дистанциях, поэтому перемещающиеся сквозь металл электроны чаще сталкиваются и повышают сопротивление. Удельное сопротивление меняется с изменением температуры ΔT:

Сопротивление конкретного образца ртути достигает нуля при крайне низком температурном показателе (4.2 К). Если показатель выше этой отметки, то наблюдается внезапный скачек сопротивления, а далее практически линейный рост с температурой

p = p 0 (1 + αΔT), где ρ 0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления. При серьезных переменах температуры α способно меняться, а для поиска p возможно потребуется нелинейное уравнение. Именно поэтому иногда оставляют суффикс температуры, при которой изменилось вещество (к примеру, α15).

Стоит отметить, что α положительно для металлов, а удельное сопротивление растет вместе с температурным показателем. Обычно температурный коэффициент составляет +3 × 10 -3 К -1 до +6 × 10 -3 К -1 для металлов с примерно комнатной температурой. Есть сплавы, которые разрабатывают специально, чтобы снизить зависимость от температуры. Например, у манганина α приближено к нулю.

Не забывайте также, что α выступает отрицательным для полупроводников, то есть, их удельное сопротивление уменьшается с ростом температурной отметки. Это отличные проводники при высоких температурах, потому что повышенное температурное смешивание увеличивает количество свободных зарядов, доступных для транспортировки тока.

Сопротивление объекта также основывается на температуре, так как R 0 располагается в прямой пропорциональности p. Мы знаем, что для цилиндра R = ρL/A. Если L и A сильно не изменяются с температурой, то R обладает одинаковой температурной зависимостью с ρ. Выходит:

R = R 0 (1 + αΔT), где R 0 – исходное сопротивление, а R – сопротивление после изменения температуры T.

Давайте рассмотрим сопротивление датчика температуры. Очень многие термометры функционируют по этой схеме. Наиболее распространенный пример – термистор. Это полупроводниковый кристалл с сильной зависимостью от температуры. Устройство небольшое, поэтому быстро переходит в тепловой баланс с человеческой частью, к которой прикасается.

Термометры основаны на автоматическом измерении температурного сопротивления термистора

Частицы проводника (молекулы, атомы, ионы), не участвующие в образовании тока, находятся в тепловом движении, а частицы, образующие ток, одновременно находятся в тепловом и в направленном движениях под действием электрического поля. Благодаря этому между частицами, образующими ток, и частицами, не участвующими в его образовании, происходят многочисленные столкновения, при которых первые отдают часть переносимой ими энергии источника тока вторым. Чем больше столкновений, тем меньше скорость упорядоченного движения частиц, образующих ток. Как видно из формулы I = enνS , снижение скорости приводит к уменьшению силы тока. Скалярная величина, характеризующая свойство проводника уменьшать силу тока, называется сопротивлением проводника. Из формулы закона Ома сопротивление Ом - сопротивление проводника, в котором получается ток силой в 1 а при напряжении на концах проводника в 1 в.

Сопротивление проводника зависит от его длины l, поперечного сечения S и материала, который характеризуется удельным сопротивлением Чем длиннее проводник, тем больше за единицу времени столкновений частиц, образующих ток, с частицами, не участвующими в его образовании, а поэтому тем больше и сопротивление проводника. Чем меньше поперечное сечение проводника, тем более плотным потоком идут частицы, образующие ток, и тем чаще их столкновения с частицами, не участвующими в его образовании, а поэтому тем больше и сопротивление проводника.

Под действием электрического поля частицы, образующие ток, между столкновениями движутся ускоренно, увеличивая свою кинетическую энергию за счет энергии поля. При столкновении с частицами, не образующими ток, они передают им часть своей кинетической энергии. Вследствие этого внутренняя энергия проводника увеличивается, что внешне проявляется в его нагревании. Рассмотрим, изменяется ли сопротивление проводника при его нагревании.

В электрической цепи имеется моток стальной проволоки (струна, рис. 81, а). Замкнув цепь, начнем нагревать проволоку. Чем больше мы ее нагреваем, тем меньшую силу тока показывает амперметр. Ее уменьшение происходит от того, что при нагревании металлов их сопротивление увеличивается. Так, сопротивление волоска электрической лампочки, когда она не горит, приблизительно 20 ом , а при ее горении (2900° С) - 260 ом . При нагревании металла увеличивается тепловое движение электронов и скорость колебания ионов в кристаллической решетке, в результате этого возрастает число столкновений электронов, образующих ток, с ионами. Это и вызывает увеличение сопротивления проводника * . В металлах несвободные электроны очень прочно связаны с ионами, поэтому при нагревании металлов число свободных электронов практически не изменяется.

* (Исходя из электронной теории, нельзя вывести точный закон зависимости сопротивления от температуры. Такой закон устанавливается квантовой теорией, в которой электрон рассматривается как частица, обладающая волновыми свойствами, а движение электрона проводимости через металл - как процесс распространения электронных волн, длина которых определяется соотношением де Бройля. )

Опыты показывают, что при изменении температуры проводников из различных веществ на одно и то же число градусов сопротивление их изменяется неодинаково. Например, если медный проводник имел сопротивление 1 ом , то после нагревания на 1°С он будет иметь сопротивление 1,004 ом , а вольфрамовый - 1,005 ом. Для характеристики зависимости сопротивления проводника от его температуры введена величина, называемая температурным коэффициентом сопротивления. Скалярная величина, измеряемая изменением сопротивления проводника в 1 ом, взятого при 0° С, от изменения его температуры на 1° С, называется температурным коэффициентом сопротивления α . Так, для вольфрама этот коэффициент равен 0,005 град -1 , для меди - 0,004 град -1 . Температурный коэффициент сопротивления зависит от температуры. Для металлов он с изменением температуры меняется мало. При небольшом интервале температур его считают постоянным для данного материала.

Выведем формулу, по которой рассчитывают сопротивление проводника с учетом его температуры. Допустим, что R 0 - сопротивление проводника при 0°С , при нагревании на 1°С оно увеличится на αR 0 , а при нагревании на - на αRt° и становится R = R 0 + αR 0 t° , или

Зависимость сопротивления металлов от температуры учитывается, например при изготовлении спиралей для электронагревательных приборов, ламп: длину проволоки спирали и допускаемую силу тока рассчитывают по их сопротивлению в нагретом состоянии. Зависимость сопротивления металлов от температуры используется в термометрах сопротивления, которые применяются для измерения температуры тепловых двигателей, газовых турбин, металла в доменных печах и т. д. Этот термометр состоит из тонкой платиновой (никелевой, железной) спирали, намотанной на каркас из фарфора и помещенной в защитный футляр. Ее концы включаются в электрическую цепь с амперметром, шкала которого проградуирована в градусах температуры. При нагревании спирали сила тока в цепи уменьшается, это вызывает перемещение стрелки амперметра, которая и показывает температуру.

Величина, обратная сопротивлению данного участка, цепи, называется электрической проводимостью проводника (электропроводностью). Электропроводность проводника Чем больше проводимость проводника, тем меньше его сопротивление и тем лучше он проводит ток. Наименование единицы электропроводности Проводимость проводника сопротивлением 1 ом называется сименс.

При понижении температуры сопротивление металлов уменьшается. Но есть металлы и сплавы, сопротивление которых при определенной для каждого металла и сплава низкой температуре резким скачком уменьшается и становится исчезающе малым - практически равным нулю (рис. 81, б). Наступает сверхпроводимость - проводник практически не обладает сопротивлением, и раз возбужденный в нем ток существует долгое время, пока проводник находится при температуре сверхпроводимости (в одном из опытов ток наблюдался более года). При пропускании через сверхпроводник тока плотностью 1200 а / мм 2 не наблюдалось выделения количества теплоты. Одновалентные металлы, являющиеся наилучшими проводниками тока, не переходят в сверхпроводящее состояние вплоть до предельно низких температур, при которых проводились опыты. Например, в этих опытах медь охлаждали до 0,0156°К, золото - до 0,0204° К. Если бы удалось получить сплавы со сверхпроводимостью при обычных температурах, то это имело бы огромное значение для электротехники.

Согласно современным представлениям, основной причиной сверхпроводимости является образование связанных электронных пар. При температуре сверхпроводимости между свободными электронами начинают действовать обменные силы, отчего электроны образуют связанные электронные пары. Такой электронный газ из связанных электронных пар обладает иными свойствами, чем обычный электронный газ - он движется в сверхпроводнике без трения об узлы кристаллической решетки.

Опыт в соответствии с общими соображениями § 46 показывает, что сопротивление проводника зависит также и от его температуры.

Намотаем в виде спирали несколько метров тонкой (диаметра 0,1-0,2 мм) железной проволоки 1 и включим ее в цепь, содержащую батарею гальванических элементов 2 и амперметр 3 (рис. 81). Сопротивление этой проволоки подберем таким, чтобы при комнатной температуре стрелка амперметра отклонялась почти на всю шкалу. Отметив показания амперметра, сильно нагреем проволоку при помощи горелки. Мы увидим, что по мере нагревания ток в цепи уменьшается, а значит, сопротивление проволоки при нагревании увеличивается. Такой результат получается не только с железом, но и со всеми другими металлами. При повышении температуры сопротивление металлов увеличивается. У некоторых металлов это увеличение значительно: у чистых металлов при нагревании на 100°С оно достигает 40-50%; у сплавов оно обычно бывает меньше. Есть специальные сплавы, у которых сопротивление почти не меняется при повышении температуры; таковы, например, константан (от латинского слова constans – постоянный) и манганин. Константан употребляется для изготовления некоторых измерительные приборов.

Рис. 81. Опыт, показывающий зависимость сопротивления проволоки от температуры. При нагревании сопротивление проволоки увеличивается: 1 – проволока, 2 – батарея гальванических элементов, 3 – амперметр

Иначе меняется при нагревании сопротивление электролитов. Повторим описанный опыт, но введем в цепь вместо железной проволоки какой-нибудь электролит (рис. 82). Мы увидим, что показания амперметра при нагревании электролита все время увеличиваются, а значит, сопротивление электролитов при повышении температуры уменьшается. Отметим, что сопротивление угля и некоторых других материалов также уменьшается при нагревании.

Рис. 82. Опыт, показывающий зависимость сопротивления электролита от температуры. При нагревании сопротивление электролита уменьшается: 1 – электролит, 2 – батарея гальванических элементов, 3 – амперметр

Зависимость сопротивления металлов от температуры используется для устройства термометров сопротивления. В простейшем виде это – намотанная на слюдяную пластинку тонкая платиновая проволока (рис. 83), сопротивление которой при различных температурах хорошо известно. Термометр сопротивления помещают внутрь тела, температуру которого желают измерить (например, в печь), а концы обмотки включают в цепь. Измеряя сопротивление обмотки, можно определить температуру. Такие термометры часто применяются для измерения очень высоких и очень низких температур, при которых ртутные термометры уже неприменимы.

Рис. 83. Термометр сопротивления

Приращение сопротивления проводника при его нагревании на 1°С, разделенное на первоначальное сопротивление, называется температурным коэффициентом сопротивления и обычно обозначается буквой . Вообще говоря, температурный коэффициент сопротивления сам зависит от температуры. Величина имеет одно значение, например, если мы будем повышать температуру от 20 до 21°С, и другое при повышении температуры от 200 до 201°С. Но во многих случаях изменение в довольно широком интервале температур незначительно, и можно пользоваться средним значением в этом интервале. Если сопротивление проводника при температуре равно , а при температуре равно , то среднее значение

. (48.1)

Обычно в качестве принимают сопротивление при температуре 0°С.

Таблица 3. Среднее значение температурного коэффициента сопротивления некоторых проводников (в интервале от 0 до 100 °С)

Вещество

Вещество

Вольфрам

Константан

Манганин

В табл. 3 приведены значения для некоторых проводников.

48.1. При включении электрической лампочки сила тока в цепи в первый момент отличается от силы тока, который течет после того, как лампочка начнет светиться. Как изменяется ток в цепи с угольной лампочкой и лампочкой, имеющей металлическую нить накаливания?

48.2. Сопротивление выключенной электрической лампочки накаливания с вольфрамовой нитью равно 60 Ом. При полном накале сопротивление лампочки возрастает до 636 Ом. Какова температура накаленной нити? Воспользуйтесь табл. 3.

48.3. Сопротивление электрической печи с никелиновой обмоткой в ненагретом состоянии равно 10 Ом. Каково будет сопротивление этой печи, когда обмотка ее нагреется до 700°С? Воспользуйтесь табл. 3.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то