Закон сохранения электрического заряда. Потенциал электростатического поля

Поле точечного заряда.

Пусть имеется один точечный заряд q . Это частный случай сферической симметрии. У нас есть формула: , где
– заряд внутри сферы радиусаr , но если заряд точки, то для точечного заряда
, при любомr . Понятно почему, на любом радиусе внутри сферы точка остаётся точкой. И для точечного заряда
. Это поле точечного заряда. Потенциал поля точечного заряда:
.

Поле системы точечных зарядов. Принцип суперпозиции.


Пусть мы имеем систему зарядов
, тогда напряжённость поля, создаваемая системой точечных зарядов, в любой точке равна сумме напряжённостей, создаваемых каждым из зарядов. Я мог бы сразу написать
, если бы вы свободно читали формулы. Учитесь читать формулы повествовательно. Зарядумножьте на вектор
, и разделите на модуль этого вектора, а что такое модуль вектора это длина. Эта вся штука даёт вектор, направленный вдоль вектора
.

То, что поля складываются это совершенно не очевидно. Это следствие линейности уравнений Максвелла. Уравнения линейны по . Это означает, что, если вы нашли два решения, то они складываются. Бывают ли поля, для которых не выполняется принцип суперпозиции? Бывают. Гравитационное поле не в ньютоновской теории, а в правильной, не удовлетворяет принципу суперпозиции. Земля создаёт в некоторой точке определённую напряжённость. Луна тоже. Поставили Землю и Луну, напряжённость в точке не равна сумме напряжённостей. Уравнение поля не линейно, физически это означат, что гравитационное поле является само себе источником. Так. Всё, конец.

В прошлый раз мы остановились на обсуждении поля, создаваемом системой зарядов. И мы видели, что поля, создаваемые каждым зарядом в отдельности в данной точке, складываются. При этом я подчеркнул, что это не самая очевидная вещь, - это свойство электромагнитного взаимодействия. Физически оно связано с тем, что поле само для себя не является источником, формально это следствие того, что уравнения линейны. Есть примеры физических полей, которые сами для себя являются источником. То есть, если в каком-то объёме это поле есть, так оно создаёт само поле в окружающем пространстве, формально это проявляется в том, что уравнения не линейны. Я там написал формулу для напряжённости
, напишем ещё формулу для потенциала.

Потенциал системы точечных зарядов.

Имеется система зарядов
и т.д. И тогда для некоторой точкимы напишем такую формулу:
. Значит, вот такой рецепт для потенциала. Напряжённость равна сумме напряжённостей, потенциал равен сумме потенциалов.

Замечание. Практически всегда удобнее вычислять потенциал, а не напряжённость, по понятным причинам: напряжённость – это вектор, и векторы надо складывать по правилу сложения векторов, ну, правилу параллелограмма, это занятие, конечно, более скучное, чем складывать числа, потенциал – это скалярная величина. Поэтому, практически всегда, когда мы имеем достаточно плотное распределение заряда, ищем потенциал, напряжённость поля потом находим по формуле:
. 1)

Поле, создаваемое произвольным ограниченным распределением заряда 1).

Ну, что тут означает эпитет «ограниченный»? То, что заряд локализован в конечной области пространства, то есть мы можем охватить этот заряд замкнутой поверхностью такой, что вне этой поверхности заряда нет. Понятно, что с точки зрения физики это не ограничение, ну, и, действительно, мы имеем дело практически всегда только с ограниченными распределениями, нет такой ситуации, чтобы заряд был размазан по всей вселенной, он концентрируется в определённых областях.

В

от такая проблема: областьзанята зарядом, по этой области размазан электрический заряд, мы должны полностью охарактеризовать этот заряд и найти создаваемое им поле. Что значит полностью охарактеризовать распределение заряда? Возьмём элемент объёма
, положение этого элемента задаётся радиус-вектором, в этом элементе сидит заряд
. Для того, чтобы найти поле, нам нужно знать заряд каждого элемента объёма, это означает, что нам нужно знать плотность заряда в каждой точке. Вот эта функция
предъявлена, она для нашей цели исчерпывающе характеризует распределение заряда, больше ничего знать не надо.

Пусть нас интересует поле в точке . А дальше принцип суперпозиции. Мы можем считать зарядdq , который сидит в этом элементе объёма, точечным 2). Мы можем написать сразу выражение для потенциала, который создаёт этот элемент в этой точке:
, это потенциал, создаваемый элементом в точке. А теперь понятно, что полный потенциал в этой точке мы найдём суммированием по всем элементам. Ну, и напишем эту сумму как интеграл:
. 3)

Этот рецепт срабатывает железно для любого предъявленного распределения заряда, никаких проблем, кроме вычисления интеграла, нет, но компьютер такую сумму посчитает. Напряжённость поля находится:
. Когда интеграл вычислен, то напряжённость находится просто дифференцированием.

Столь же интересно и не менее важно поле диполя, возникающее при других обстоятельствах. Пусть у нас есть тело со сложным распределением заряда, скажем, как у молекулы.воды (см. фиг. 6.2), а нас интересует только поле вдали от него. Мы покажем, что можно получить сравнительно простое выражение для полей, пригодное для расстояний, много больших, чем размеры тела.

Мы можем смотреть на это тело, как на скопление точечных зарядов q ¡ в некоторой ограниченной области (фиг. 6.7). (Позже, если понадобится, мы q ¡ заменим на ρdV .) Пускай заряд q ¡ удален от начала координат, выбранного где-то внутри группы зарядов, на расстояние d ¡ . Чему равен потенциал в точке Р, расположенной где-то на отлете, на расстоянии R, много большем, чем самое большое из d ¡ ? Потенциал всего нашего скопления выражается формулой

где r ¡ — расстояние от Р до заряда q ¡ (длина вектора R-d ¡). Если расстояние от зарядов до Р (до точки наблюдения) чрезвычайно велико, то каждое из r ¡ можно принять за R . Каждый член в сумме станет равным q ¡ /R , и 1/R можно будет вынести из-под знака суммы. Получится простой результат

где Q — суммарный заряд тела. Таким образом, мы убедились, что из точек, достаточно удаленных от скопления зарядов, оно кажется просто точечным зарядом. Этот результат в общем не очень удивителен.

Но что, если положительных и отрицательных зарядов в группе окажется поровну? Суммарный заряд Q тогда будет равен нулю. Это не такой уж редкий случай; мы знаем, что большинство тел нейтрально. Нейтральна молекула воды, но заряды в ней размещаются отнюдь не в одной точке, так что, приблизившись вплотную, мы должны будем заметить какие-то признаки того, что заряды разделены. Для потенциала произвольного распределения зарядов в нейтральном теле мы нуждаемся в приближении, лучшем, чем даваемое формулой (6.22). Уравнение (6.21) по-прежнему годится, но полагать r ¡ = R больше нельзя. Для r ¡ нужно выражение поточнее. В хорошем приближении r ¡ можно считать отличающимся от R (если точка Р сильно удалена) на проекцию вектора d на вектор R (см. фиг. 6.7, но вы должны только представлять себе, что Р намного дальше, чем показано). Иными словами, если е r — единичный вектор в направлении R, то за следующее приближение к r ¡ нужно принять

Но нам ведь нужно не r ¡ а 1/r ¡ ; оно в нашем приближении (с учетом d¡«R) равно

Подставив это в (6.21), мы увидим, что потенциал равен

Многоточие указывает члены высшего порядка по d / R , которыми мы пренебрегли. Как и те члены, которые мы выписали, это последующие члены разложения 1/ r ¡ в ряд Тэйлора в окрестности 1/R по степеням d ¡ / R .

Первый член в (6.25) мы уже получили; в нейтральных телах он пропадает. Второй член, как и у диполя, зависит от 1/R 2 . Действительно, если мы определим

как величину, описывающую распределения зарядов, то второй член потенциала (6.25) обратится в

т. е. как раз в диполъный потенциал. Величина р называется диполъным моментом распределения. Это обобщение нашего прежнего определения; оно сводится к нему в частном случав точечных зарядов.

В итоге мы выяснили, что достаточно далеко от любого набора зарядов потенциал оказывается дипольным, лишь бы этот набор был в целом нейтральным. Он убывает, как 1/ R 3 , и меняется, как cos θ, а величина его зависит от дипольного момента распределения зарядов. Именно по этой причине поля диполей и важны; сами же по себе пары точечных зарядов встречаются крайне редко.

У молекулы воды, например, дипольный момент довольно велик. Электрическое поле, создаваемое этим моментом, ответственно за некоторые важные свойства воды. А у многих молекул, скажем у СО 2 , дипольный момент исчезает благодаря их симметрии. Для таких молекул разложение нужно проводить еще точнее, до следующих членов потенциала, убывающих как 1/ R 3 и называемых квадрупольным потенциалом. Эти случаи мы рассмотрим позже.

Потенциал поля системы зарядов

Пусть система состоит из неподвижных точечных зарядов q 1 , q 2 , … Согласно принципу суперпозиции в любой точке поля напряженность Е=Е 1 + Е 2 +., где Е 1 - напряженность поля заряда q 1 и т.д. Тогда можно записать, используя формулу (1.8):

где т.е. принцип суперпозиции оказывается справедливым и для потенциала. Таким образом, потенциал системы неподвижных точечных зарядов

где r i - расстояние от точечного заряда q, до интересующей нас точки поля. Здесь также произвольная постоянная опущена. Это полностью соответствует тому факту, что всякая реальная система зарядов ограничена в пространстве, поэтому ее потенциал на бесконечности можно принять равным нулю.

Если заряды, образующие систему, распределены непрерывно, то, как обычно, мы считаем, что каждый элементарный объем dV содержит "точечный" заряд сdV, где с - объемная плотность заряда в месте нахождения объема dV. С учетом этого формуле (1.10) можно придать иной вид

где интегрирование проводится или по всему пространству, или по той его части, которая содержит заряды. Если заряды расположены только на поверхности S, то

где у - поверхностная плотность заряда; dS - элемент поверхности S. Аналогичное выражение будет и в том случае, когда заряды распределены линейно.

Итак, зная распределение зарядов (дискретное, непрерывное), мы можем в принципе найти потенциал поля любой системы.

Связь между потенциалом и напряженностью поля

Электрическое поле, как известно, полностью описывается векторной функцией Е (r). Зная ее, мы можем найти силу, действующую на интересующий нас заряд в любой точке поля, вычислить работу сил поля при каком угодно перемещении заряда и другое. А что дает введение потенциала? Прежде всего, оказывается, зная потенциал ц (r) данного электрического поля, можно достаточно просто восстановить и само поле Е (r). Рассмотрим этот вопрос более подробно.

Связь между ц и Е можно установить с помощью уравнения (1.8). Пусть перемещение dl параллельно оси X, тогда dl =Ei dx, где i - орт оси X; dx - приращение координаты х. В этом случае

где - проекция вектора E на орт i (а не на перемещение dl). Сопоставив последнее выражение с формулой (1.8), получим

где символ частной производной подчеркивает, что функцию ц (х, у, z) надо дифференцировать только по х, считая у и z при этом постоянными.

Рассуждая аналогично, можно получить соответствующие выражения для проекций Е у и Е z . А определив Е x , Е y , Е z легко найти и сам вектор Е

Величина, стоящая в скобках, есть не что иное, как градиент потенциала ц (grad ц). Т.е. напряженность Е поля равна со знаком минус градиенту потенциала. Это и есть та формула, с помощью которой можно восстановить поле Е, зная функцию ц (r).

Эквипотенциальные поверхности

Введем понятие эквипотенциальной поверхности - поверхности, во всех точках которой потенциал ц имеет одно и то же значение. Убедимся в том, что вектор Е направлен в каждой точке по нормали к эквипотенциальной поверхности в сторону уменьшения потенциалац. В самом деле, из формулы (1.13) следует, что проекция вектора Е на любое направление, касательное к эквипотенциальной поверхности в данной точке, равна нулю. А это значит, что вектор Е нормален к данной поверхности. Далее, возьмем перемещение dxпо нормали к поверхности в сторону уменьшения ц, тогда 5ц<0 и согласно (1.13) E x >0, т.е. вектор Е направлен в сторону уменьшения ц, или в сторону, противоположную вектору grad ц.

Эквипотенциальные поверхности наиболее целесообразно проводить так, чтобы разность потенциалов для двух соседних поверхностей была бы одинаковой. Тогда по густоте эквипотенциальных поверхностей можно наглядно судить о значении напряженности поля в разных точках. Там, где эти поверхности расположены гуще ("круче потенциальный рельеф"), там напряженность поля больше.

Столь же интересно и не менее важно поле диполя, возникающее при других обстоятельствах. Пусть у нас есть тело со сложным распределением заряда, скажем, как у молекулы воды (см. фиг. 6.2), а нас интересует только поле вдали от него. Мы покажем, что можно получить сравнительно простое выражение для полей, пригодное для расстояний, много больших, чем размеры тела.

Мы можем смотреть на это тело, как на скопление точечных зарядов в некоторой ограниченной области (фиг. 6.7). (Позже, если понадобится, мы заменим на .) Пускай заряд удален от начала координат, выбранного где-то внутри группы зарядов, на расстояние . Чему равен потенциал в точке , расположенной где-то на отлете, на расстоянии , много большем, чем самое большое из ? Потенциал всего нашего скопления выражается формулой

, (6.21)

где - расстояние от до заряда (длина вектора ). Если расстояние от зарядов до (до точки наблюдения) чрезвычайно велико, то каждое из можно принять за . Каждый член в сумме станет равным , и можно будет вынести из-под знака суммы. Получится простой результат

, (6.22)

где - суммарный заряд тела. Таким образом, мы убедились, что из точек, достаточно удаленных от скопления зарядов, оно кажется просто точечным зарядом. Этот результат в общем не очень удивителен.

Фигура 6.7. Вычисление потенциала в точке , сильно удаленной от группы зарядов.

Но что, если положительных и отрицательных зарядов в группе окажется поровну? Суммарный заряд тогда будет равен нулю. Это не такой уж редкий случай; мы знаем, что большинство тел нейтрально. Нейтральна молекула воды, но заряды в ней размещаются отнюдь не в одной точке, так что, приблизившись вплотную, мы должны будем заметить какие-то признаки того, что заряды разделены. Для потенциала произвольного распределения зарядов в нейтральном теле мы нуждаемся в приближении, лучшем, чем даваемое формулой (6.22). Уравнение (6.21) по-прежнему годится, но полагать больше нельзя. Для нужно выражение поточнее. В хорошем приближении можно считать отличающимся от (если точка сильно удалена) на проекцию вектора на вектор (см. фиг. 6.7, но вы должны только представлять себе, что намного дальше, чем показано). Иными словами, если - единичный вектор в направлении , то за следующее приближение к нужно принять

Но нам ведь нужно не , а ; оно в нашем приближении (с учетом ) равно

(6.24)

Подставив это в (6.21), мы увидим, что потенциал равен

(6.25)

Многоточие указывает члены высшего порядка по , которыми мы пренебрегли. Как и те члены, которые мы выписали, это последующие члены разложения в ряд Тэйлора в окрестности по степеням .

Первый член в (6.25) мы уже получили; в нейтральных телах он пропадает. Второй член, как и у диполя, зависит от . Действительно, если мы определим

как величину, описывающую распределения зарядов, то второй член потенциала (6.25) обратится в

т. е. как раз в дипольный потенциал. Величина называется дипольным моментом распределения. Это обобщение нашего прежнего определения; оно сводится к нему в частном случае точечных зарядов.

В итоге мы выяснили, что достаточно далеко от любого набора зарядов потенциал оказывается дипольным, лишь бы этот набор был в целом нейтральным. Он убывает, как , и меняется, как , а величина его зависит от дипольного момента распределения зарядов. Именно по этой причине поля диполей и важны; сами же по себе пары точечных зарядов встречаются крайне редко.

У молекулы воды, например, дипольный момент довольно велик. Электрическое поле, создаваемое этим моментом, ответственно за некоторые важные свойства воды. А у многих молекул, скажем у , дипольный момент исчезает благодаря их симметрии. Для таких молекул разложение нужно проводить еще точнее, до следующих членов потенциала, убывающих как и называемых квадрупольным потенциалом. Эти случаи мы рассмотрим позже.

Аннотация

В калибровке Кулона рассчитаны потенциалы поля произвольного распределения зарядов и токов. Показано, что векторный потенциал определяется не только значениями плотности тока в запаздывающие моменты времени, но и предысторией изменения плотности заряда на временном интервале, ограниченном запаздывающим и текущим моментами. Получены различные представления потенциалов Лиенара – Вихерта в калибровке Кулона. Они применены к случаю равномерно и прямолинейно движущегося точечного заряда.

Биография автора

Александр Николаевич Фурс, Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Республика Беларусь

доктор физико-математических наук, доцент; профессор кафедры теоретической физики и астрофизики физического факультета

Литература

1. Ландау Л. Д., Лифшиц Е. М. Теория поля. М., 1973.
2. Джексон Дж. Классическая электродинамика. М., 1965.
3. Бредов М. М., Румянцев В. В., Топтыгин И. Н. Классическая электродинамика. М., 1985.
4. Гайтлер В. Квантовая теория излучения. М., 1956.
5. Гинзбург В. Л. Теоретическая физика и астрофизика. Дополнительные главы. М., 1980.
6. Wundt B. J., Jentschura U. D. Sources, potentials and fields in Lorenz and Coulomb gauge: Cancellation of instantaneous interactions for moving point charges // Ann. Phys. 2012. Vol. 327, № 4. P. 1217–1230.
7. Ахиезер А. И., Берестецкий В. Б. Квантовая электродинамика. М., 1969.

Ключевые слова

Калибровочная инвариантность, калибровки Лоренца и Кулона, запаздывающие потенциалы, потенциалы Лиенара – Вихерта

  1. Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution-NonCommercial. 4.0 International (CC BY-NC 4.0).
  2. Авторы сохраняют право заключать отдельные контрактные договоренности, касающиеся неэксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге) со ссылкой на ее оригинальную публикацию в этом журнале.
  3. Авторы имеют право размещать их работу в интернете (например, в институтском хранилище или на персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См.
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то