Виды излучений. Презентация на тему "виды излучений и их свойства"

https://accounts.google.com


Подписи к слайдам:

Виды излучений

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Виды излучений

Тепловое излучение – излучение нагретых тел. При столкновении быстрых атомов друг с другом часть их кинетической энергии идет на возбуждение атомов, которые затем излучают свет и переходят в невозбужденное состояние.

Электролюминесценция При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают неупругие соударения с атомами. Часть энергии идет на возбуждение атомов. Возбужденные атомы излучают свет.

Катодолюминесценция - свечение твердых тел, вызванных бомбардировкой их электронами.

Хемилюминесценция При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии расходуется на излучение света.

1) Флуоресценция 2) Фосфоросценция С вет возбуждает атомы вещества, и после этого они светятся сами. Фотолюминесценция

Флуоресценция Некоторые вещества обладают свойством самосветиться в течение того времени, пока они подвергаются освещению посторонним источником света. Так, например, слабый раствор сернокислого хинина, подкисленный несколькими каплями серной кислоты, на дневном свете сияет с поверхности слабым голубоватым светом. Свечение тотчас исчезает, как будет прекращен доступ света к жидкости.

Применение флуоресценции Дорожные знаки на щитах, покрытых флуоресцентной плёнкой Ёлочные игрушки, покрытых флуоресцентной краской

Правило Стокса явление Ф. возникает в способных к Ф. телах почти исключительно под влиянием света, содержащего лучи короткой длины волны - фиолетовые и ультрафиолетовые. длина волны фотолюминесценции больше, чем длина волны возбуждающего света.

Фотолюминесценция Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С.И.Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными светиться под действием излучения газового разряда.


Cлайд 1

Виды излучений Источники света Учитель физики Трифоева Наталия Борисовна Школа № 489 Московского р-на Санкт-Петербурга

Cлайд 2

Источник света должен потреблять энергию Свет – это электромагнитные волны с длиной волны4×10-7-8×10-7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов, из которых состоит вещество. Внутри атома нет света. Атомы рождают свет только после их возбуждения. Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Cлайд 3

Тепловое излучение Тепловое излучение – это наиболее простой и распространенный вид излучения, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (или молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет. Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь около 12% всей энергии, выделяемой в нити лампы электрическим током, преобразуется в энергию света. Наконец, тепловым источником света является пламя. Крупинки сажи (не успевшие сгореть частицы топлива) раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

Cлайд 4

Электролюминесценция Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают неупругие соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция. Северное сияние есть проявление электролюминесценции. Потоки заряженных частиц, испускаемых Солнцем, захватываются магнитным полем Земли. Они возбуждают у магнитных полюсов Земли атомы верхних слоев атмосферы, благодаря чему эти слои светятся. Также, электролюминесценция используется в трубках для рекламных надписей.

Cлайд 5

Катодолюминесценция Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминесценцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.

Cлайд 6

Хемилюминесценция При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемилюминесценцией. Почти каждый из вас, вероятно, знаком с ним. Летом в лесу можно ночью увидеть насекомое светлячка. На теле у него «горит» маленький зеленый «фонарик». Вы не обожжете пальцев, поймав светлячка. Светящееся пятнышко на его спинке имеет почти ту же температуру, что и окружающий воздух. Свойством светиться обладают и другие живые организмы: бактерии, насекомые, многие рыбы, обитающие на большой глубине. Часто светятся в темноте кусочки гниющего дерева.

Cлайд 7

Фотолюминесценция Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), и после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения. Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально. Если направить на сосуд с флюоресцеином (органический краситель) световой пучок, пропущенный через фиолетовый светофильтр, то эта жидкость начинает светиться зелено-желтым светом, т. е. светом большей длины волны, чем у фиолетового света. Явление фотолюминесценции широко используется в лампах дневного света. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.

Слайд 1

Виды излучений

Инфракрасное излучение Ультрафиолетовое излучение Рентгеновское излучение

Слайд 2

Инфракрасное излучение

Инфракрасное- «тепловое» излучение. Источник излучения: любые тела, нагретые до определённой температуры. λ=0,74 - 2000 мкм; Свойства: Мало поглощаются воздухом, пылью; Вызывают нагревание тел.

Уильям Гершель (нем) 1800г

Слайд 3

Использование инфракрасного излучения

ИК (инфракрасные) диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах и т. п. Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Положительным побочным эффектом так же является стерилизация пищевых продуктов. Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды).

Слайд 4

Ультрафиолетовое излучение

Ультрафиолетовое излучение λ: 380 нм - 10 нм; ν: от 7,9×1014 - 3×1016 Гц Источник излучения: Солнце, ртутные лампы Свойства: интенсивно поглощается атмосферой и исследуется только вакуумными приборами; Обладает высокой химической и биологической активностью. Ионизирует воздух

Уильям Хайд Волластон (англ.) 1801

Слайд 5

повышает тонус живого организма; активирует защитные механизмы; повышает уровень иммунитета, а также увеличивает секрецию ряда гормонов; образуются вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов; изменяется углеводный и белковый обмен веществ в организме; изменяет легочную вентиляцию - частоту и ритм дыхания; повышается газообме; образуется в организме витамин Д, укрепляющий костно-мышечную систему и обладающий антирахитным действием.

Слайд 6

Отрицательно действует: на кожу в больших количествах; на сетчатку глаза

Слайд 7

Источники УФИ. Применение.

Солнце Ртутно-кварцевые лампы

Люминесцентные лампы Кварцевание инструмента в лаборатории Солярий

Слайд 8

Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В. К. Рентгеном

Слайд 9

Рентгеновские лучи

Рентге́новское излуче́ние λ: 10-14 до 10-8 м Свойства: Высокая химическая и биологическая активность; Ионизирует воздух; Высокая проникающая способность; Свечение газов; Вызывает мутацию организмов.

Вильгельм Конрад Рёнтген 1895

Слайд 10

Применение РИ

Медицина Рентгеноспектрометр Дефектоскоп

Слайд 11

Медицина. Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.)) с помощью рентгеновского излучения называется рентгеновской дефектоскопией. В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК. Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Лампа чёрного света - лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт крайне мало видимого света. Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Обеззараживание ультрафиолетовым (УФ) излучением. Стерилизация воздуха и твёрдых поверхностей. Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением. Химический анализ, УФ-спектрометрия. УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс - длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение. Ловля насекомых. В медицине (обеззараживание помещения).

ПРЕЗЕНТАЦИЯ по физике на тему «Виды излучений» Выполнила ученица 11 «Б» класса Двигалова Екатерина 900 igr. net

Инфракрасное излучение Инфракрасное- Е vк vф Уильям Гершель (нем) 1800 г «тепловое» излучение. Источник излучения: любые тела, нагретые до определённой температуры. λ=0, 74 - 2000 мкм; Свойства: Мало поглощаются воздухом, пылью; Вызывают нагревание тел.

Использование инфракрасного излучения ИК (инфракрасные) диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах и т. п. Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Положительным побочным эффектом так же является стерилизация пищевых продуктов. Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды).

Ультрафиолетовое излучение λ: 380 нм - 10 нм; ν: от 7, 9× 1014 - 3× 1016 Гц Источник излучения: Солнце, ртутные лампы Свойства: Уильям Хайд Волластон (англ.) 1801 интенсивно поглощается атмосферой и исследуется только вакуумными приборами; Обладает высокой химической и биологической активностью. Ионизирует воздух

УФИШ повышает тонус живого организма; Ш активирует защитные механизмы; Ш повышает уровень иммунитета, а также увеличивает секрецию ряда гормонов; Ш образуются вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов; Ш изменяется углеводный и белковый обмен веществ в организме; Ш изменяет легочную вентиляцию - частоту и ритм дыхания; повышается газообмен; Ш образуется в организме витамин Д, укрепляющий костно-мышечную систему и обладающий антирахитным действием.

Рентгеновские лучи Рентге новское излуче ние λ: 10 -14 до 10 -8 м Свойства: v Высокая химическая и биологическая активность; v Ионизирует воздух; v Высокая проникающая способность; v Свечение газов; v Вызывает мутацию организмов. Вильгельм Конрад Рёнтген 1895

Применение РИ Медицина. Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.)) с помощью рентгеновского излучения называется рентгеновской дефектоскопией. В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК. Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то