Вероятность события. Определение вероятности события

Классическое определение вероятности
Вероятностью события А Р(A) называется отношение числа благоприятствующих этому событию исходов m к общему числу всех единственно возможных и равновозможных элементарных исходов n, Р(A)=.

Задача1

Из 20 экзаменационных билетов 3 содержат простые вопросы. Пять студентов по очереди берут билеты. Найти вероятность того, что хотя бы одному из них достанется билет с простыми вопросами.

Решение:

Для начала найдем вероятность того, что ни одному из студентов не достанется билет с простыми вопросами.
Эта вероятность равна

Первая дробь показывает вероятность того, что первому студенту достался билет со сложными вопросами (их 17 из 20)
Вторая дробь показывает вероятность того, что второму студенту достался билет со сложными вопросами (их осталось 16 из 19)
Третья дробь показывает вероятность того, что третьему студенту достался билет со сложными вопросами (их осталось 15 из 18)
И так далее до пятого студента. Вероятности перемножаются т.к. по условию требуется одновременное выполнение этих условий.

Чтобы получить вероятность того, что хотя бы одному из студентов достанется билет с простыми вопросами надо вычесть полученную выше вероятность из единицы.

Ответ: 0,6009.

Задача2
Из множества всех последовательностей длины 10, состоящих из цифр 0; 1; 2; 3, наудачу выбирается одна. Какова вероятность того, что выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности. Решение

Вероятность события A – «Выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности», согласно классическому определению, равна P (A ) = , где n – полное число равновероятных исходов; m – число исходов, благоприятствующих событию A .

Число способов заполнить 10 позиций в последовательности цифрами 0; 1; 2; 3 составляет, с учетом возможности повторения цифр, n = 410 = 220 = 1048576.

Число способов разместить 5 нулей на 10 позициях в последовательности при условии, что нули обязательно находятся на первом и десятом месте в последовательности, равно числу способов разместить три нуля на восьми свободных позициях в последовательности и равно числу сочетаний из 8 элементов по 3: = = 56.

Оставшиеся 8 – 3 = 5 позиций в последовательности будут заполнены цифрами 1; 2; 3. Число способов осуществить это, с учетом возможности повторения, равно 35 = 243.

Т.о., число исходов, благоприятствующих событию A , равно m = ×35 = 56×243 = 13608.
Искомая вероятность события A равна:
P (A ) = = 0,013.
Ответ: P(A) = = 0,013.

Задача 3.
Имеется 100 одинаковых деталей, среди которых 3 бракованных. Найти вероятность того, что взятая наудачу деталь без брака.

Решение. В этой задаче производится испытание – извлекается одна деталь. Число всех исходов испытания равно 100, т. к. может быть взята любая деталь из 100. Эти исходы несовместны, равновозможны, единственно возможны. Таким образом, Событие - появилась деталь без брака. Всего в партии 97 деталей без брака, следовательно, число исходов, благоприятных появлению события А равно 97 . Итак, Тогда
Задача 4.
Код банковского сейфа состоит из 6 цифр. Найти вероятность того, что наудачу выбранный код содержит различные цифры? Решение. Так как на каждом из шести мест в шестизначном шифре может стоять любая из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, то всех различных шестизначных номеров по правилу произведения будет . Номера, в которых все цифры различны, - это размещения из 10 элементов (10 цифр) по 6. Поэтому число благоприятствующих исходов . Искомая вероятность равна
Задача 5.
Между шестью фирмами (А, Б, В, Г, Д, Е), занимающимися продажей компьютерной техники, проводится жеребьевка на предмет очередности предъявления своей продукции на выставке потенциальным потребителям. Какова вероятность того, что очередь будет выстроена по порядку, т. е. А, Б, В, Г, Д, Е? Решение. Исход испытания - случайное расположение фирм в очереди. Число всех возможных исходов равно числу всех перестановок из шести элементов (фирм), т.е.Число исходов, благоприятствующих событию : m= 1, если очередь выстроена по порядку. Тогда
Задача 6.
В компании 10 акционеров, из них трое имеют привилегированные акции. На собрание акционеров явилось 6 человек. Найти вероятность того, что среди явившихся акционеров:
а) все трое акционеров с привилегированными акциями отсутствуют;
б) двое присутствуют и один не явился. Решение
а) испытанием является отбор 6 человек из 10 акционеров. Число всех исходов испытания равно числу сочетаний из 10 по 6, т. е.

Пусть событие - среди шести человек нет ни одного с привилегированными акциями. Исход, благоприятствующий событию ,- отбор шести человек среди семи акционеров, не имеющих привилегированных акций. Число всех исходов, благоприятствующих событию А , будет
Искомая вероятность

б) пусть событие - среди шести явившихся акционеров двое с привилегированными акциями, а остальные четыре – с общими акциями. Число всех исходов, Число способов выбора двух человек из необходимых трех Число способов выбора оставшихся четырех акционеров среди семи с общими акциями Тогда число всех способов отбора по правилу произведения
Искомая вероятность равна

Событие

Определение 1

Событием будем называть любое утверждение, которое может как произойти, так и не произойти.

Обычно события обозначаются большими английскими буквами.

Пример: $A$ – выпадение числа $6$ на кости.

В связи с тем, что событие может иметь две вариации исхода («произошло» и «не произошло») мы сталкиваемся с понятие вероятности такого события.

Понятие вероятности события

Определение 2

Вероятностью события будем называть число, которое обозначает степень возможности, что такое событие произойдет.

Вероятность события обозначается как $P(A)$

Чтобы определить границы значения этого числа введем понятие достоверного и невозможного событий.

Определение 3

Достоверным событием будем называть такое, которое произойдет при любых обстоятельствах.

Примером такого события может быть следующее: Сумма «точек» на классической кости всегда равняется $21$.

Вероятность такого события мы будем принимать за единицу.

Определение 4

Невозможным событием будем называть такое, которое не может произойти ни при каком обстоятельстве.

Примером такого события может быть следующее: При игре в «очко» игрок набрал $1$ очко.

Вероятность такого события мы будем принимать за $0$.

То есть значение вероятности любого события содержится в отрезке $$.

В современной теории вероятности принято выделять четыре определения для вероятности: классической, геометрическое, статистическое и аксиоматическое определения. Рассмотрим их отдельно.

Классическое определение

Классическое определение связано с такими неопределяемыми понятиями как равновозможность и элементарность события. Интуитивно их можно понять на следующих примерах:

Равновозможность: При подбрасывании монеты она может упасть как аверсом, так и реверсом независимо от внешних условий. То есть можно сказать что вероятность выпадения одной или другой стороны по сути одинакова.

Элементарность события: Если на кости выпадет число $4$, то это означает, что числа $1, 2, 3, 5$ и $6$ уже не выпали.

Определение 5

Вероятностью события будем называть отношения числа n равновозможных элементарных событий исходного события $B$ ко всем элементарным событиям $N$.

Математически это выглядит следующим образом:

$P(B)=\frac{n}{N}$

Геометрическое определение

Геометрическое определение применяется для случая, когда количество равновозможных событий будет бесконечно. Здесь, для введения геометрического определения рассмотрим следующий пример. Для игры дартс берем круг площадью $S$ и разбиваем его на несколько кругов. Какова вероятность, что дротик попадет в центральный круг? (Исключим здесь случаи полного непопадания в поле). Очевидно что равновозможных событий здесь будет бесконечно (как и общих событий) так как круг содержит в себе бесконечное число точек. Пусть площадь центрального круга равняется $s$. Тогда мы сталкиваемся с геометрическим определением вероятности такого события:

$P(B)=\frac{s}{S}$

Статистическое (частотное) определение

Классическое определение довольно часто не учитывает всех возможностей. Рассматривая даже классический пример с бросанием кости мы пренебрегаем возможностью, что не выпадет никакого из шести чисел (кубик просто «остановится» на уголке). Поэтому вводят следующее определение вероятности, учитывающее все возможности. Рассматриваем $N$ наблюдений. Пусть нужное нам событие при этом выпало $n$ раз. Тогда

$P(B)=lim_{N→∞}\frac{n}{N}$

Аксиоматическое определение

Данное определение задается с помощью аксиоматики Колмогорова.

Пусть $X$ - пространство всех элементарных событий. Тогда

Определение 6

Вероятностью события $B$ будем называть такую функцию $P(B)$, которая удовлетворяет следующим условиям:

  1. Данная функция всегда неотрицательна,
  2. Вероятность того, что произойдет хотя бы одно из попарно несовместных событий равняется сумме их вероятностей.
  3. Функция всегда меньше или равна $1$, причем $P(X)=1$.

1.1. Некоторые сведения из комбинаторики

1.1.1. Размещения

Рассмотрим простейшие понятия, связанные с выбором и расположением некоторого множества объектов.
Подсчет числа способов, которыми можно совершить эти действия, часто производится при решении вероятностных задач.
Определение . Размещением из n элементов по k (k n ) называется любое упорядоченное подмножество из k элементов множества, состоящего из n различных элементов.
Пример. Следующие последовательности цифр являются размещениями по 2 элемента из 3 элементов множества {1;2;3}: 12, 13, 23, 21, 31, 32.
Заметим, что размещения отличаются порядком входящих в них элементов и их составом. Размещения 12 и 21 содержат одинаковые цифры, но порядок их расположения различен. Поэтому эти размещения считаются разными.
Число различных размещений из n элементов по k обозначается и вычисляется по формуле:
,
где n ! = 1∙2∙...∙(n - 1)∙ n (читается «n – факториал»).
Число двузначных чисел, которые можно составить из цифр 1, 2, 3 при условии, что ни одна цифра не повторяется равно: .

1.1.2. Перестановки

Определение . Перестановками из n элементов называются такие размещения из n элементов, которые различаются только расположением элементов.
Число перестановок из n элементов P n вычисляется по формуле: P n =n !
Пример. Сколькими способами могут встать в очередь 5 человек? Количество способов равно числу перестановок из 5 элементов, т.е.
P 5 =5!=1∙2∙3∙4∙5=120.
Определение . Если среди n элементов k одинаковых, то перестановка этих n элементов называется перестановкой с повторениями.
Пример. Пусть среди 6 книг 2 одинаковые. Любое расположение всех книг на полке - перестановка с повторениями.
Число различных перестановок с повторениями (из n элементов, среди которых k одинаковых) вычисляется по формуле: .
В нашем примере число способов, которыми можно расставить книги на полке, равно: .

1.1.3. Сочетания

Определение . Сочетаниями из n элементов по k называются такие размещения из n элементов по k , которые одно от другого отличаются хотя бы одним элементом.
Число различных сочетаний из n элементов по k обозначается и вычисляется по формуле: .
По определению 0!=1.
Для сочетаний справедливы следующие свойства:
1.
2.
3.
4.
Пример. Имеются 5 цветков разного цвета. Для букета выбирается 3 цветка. Число различных букетов по 3 цветка из 5 равно: .

1.2. Случайные события

1.2.1. События

Познание действительности в естественных науках происходит в результате испытаний (эксперимента, наблюдений, опыта).
Испытанием или опытом называется осуществление какого-нибудь определенного комплекса условий, который может быть воспроизведен сколь угодно большое число раз.
Случайным называется событие, которое может произойти или не произойти в результате некоторого испытания (опыта).
Таким образом, событие рассматривается как результат испытания.
Пример. Бросание монеты – это испытание. Появление орла при бросании – событие.
Наблюдаемые нами события различаются по степени возможности их появления и по характеру их взаимосвязи.
Событие называется достоверным , если оно обязательно произойдет в результате данного испытания.
Пример. Получение студентом положительной или отрицательной оценки на экзамене есть событие достоверное, если экзамен протекает согласно обычным правилам.
Событие называется невозможным , если оно не может произойти в результате данного испытания.
Пример. Извлечение из урны белого шара, в которой находятся лишь цветные (небелые) шары, есть событие невозможное. Отметим, что при других условиях опыта появления белого шара не исключается; таким образом, это событие невозможно лишь в условиях нашего опыта.
Далее случайные события будем обозначать большими латинскими буквами A,B,C... Достоверное событие обозначим буквой Ω, невозможное – Ø.
Два или несколько событий называются равновозможными в данном испытании, если имеются основания считать, что ни одно из этих событий не является более возможным или менее возможным, чем другие.
Пример. При одном бросании игральной кости появление 1, 2, 3, 4, 5 и 6 очков - все это события равновозможные. Предполагается, конечно, что игральная кость изготовлена из однородного материала и имеет правильную форму.
Два события называются несовместными в данном испытании, если появление одного из них исключает появление другого, и совместными в противном случае.
Пример. В ящике имеются стандартные и нестандартные детали. Берем на удачу одну деталь. Появление стандартной детали исключает появление нестандартной детали. Эти события несовместные.
Несколько событий образуют полную группу событий в данном испытании, если в результате этого испытания обязательно наступит хотя бы одно из них.
Пример. События из примера образуют полную группу равновозможных и попарно несовместных событий.
Два несовместных события, образующих полную группу событий в данном испытании, называютсяпротивоположными событиями .
Если одно из них обозначено через A , то другое принято обозначать через (читается «не A »).
Пример. Попадание и промах при одном выстреле по цели - события противоположные.

1.2.2. Классическое определение вероятности

Вероятность события – численная мера возможности его наступления.
Событие А называется благоприятствующим событию В , если всякий раз, когда наступает событие А , наступает и событие В .
События А 1 , А 2 , ..., А n образуют схему случаев , если они:
1) равновозможны;
2) попарно несовместны;
3) образуют полную группу.
В схеме случаев (и только в этой схеме) имеет место классическое определение вероятности P (A ) события А . Здесь случаем называют каждое из событий, принадлежащих выделенной полной группе равновозможных и попарно несовместных событий.
Если n – число всех случаев в схеме, а m – число случаев, благоприятствующих событию А , то вероятность события А определяется равенством:

Из определения вероятности вытекают следующие ее свойства:
1. Вероятность достоверного события равна единице.
Действительно, если событие достоверно, то каждый случай в схеме случаев благоприятствует событию. В этом случае m = n и, следовательно,

2. Вероятность невозможного события равна нулю.
Действительно, если событие невозможно, то ни один случай из схемы случаев не благоприятствует событию. Поэтому m =0 и, следовательно,

Вероятность случайного события есть положительное число, заключенное между нулем и единицей.
Действительно, случайному событию благоприятствует лишь часть из общего числа случаев в схеме случаев. Поэтому 0<m <n , а, значит, 0<m /n <1 и, следовательно, 0 < P(A) < 1.
Итак, вероятность любого события удовлетворяет неравенствам
0 ≤ P(A) ≤ 1.
В настоящее время свойства вероятности определяются в виде аксиом, сформулированных А.Н. Колмогоровым.
Одним из основных достоинств классического определения вероятности является возможность вычислить вероятность события непосредственно, т.е. не прибегая к опытам, которые заменяют логическими рассуждениями.

Задачи непосредственного вычисления вероятностей

Задача 1.1 . Какова вероятность появления четного числа очков (событие А) при одном бросании игрального кубика?
Решение . Рассмотрим события А i – выпало i очков, i = 1, 2, …,6. Очевидно, что эти события образуют схему случаев. Тогда число всех случаев n = 6. Выпадению четного числа очков благоприятствуют случаи А 2 , А 4 , А 6 , т.е. m = 3. Тогда .
Задача 1.2 . В урне 5 белых и 10 черных шаров. Шары тщательно перемешивают и затем наугад вынимают 1 шар. Какова вероятность того, что вынутый шар окажется белым?
Решение . Всего имеется 15 случаев, которые образуют схему случаев. Причем ожидаемому событию А – появлению белого шара, благоприятствуют 5 из них, поэтому .
Задача 1.3 . Ребенок играет с шестью буквами азбуки: А, А, Е, К, Р, Т. Найти вероятность того, что он сможет сложить случайно слово КАРЕТА (событие А).
Решение . Решение осложняется тем, что среди букв есть одинаковые – две буквы «А». Поэтому число всех возможных случаев в данном испытании равно числу перестановок с повторениями из 6 букв:
.
Эти случаи равновозможны, попарно несовместны и образуют полную группу событий, т.е. образуют схему случаев. Лишь один случай благоприятствует событию А . Поэтому
.
Задача 1.4 . Таня и Ваня договорились встречать Новый год в компании из 10 человек. Они оба очень хотели сидеть рядом. Какова вероятность исполнения их желания, если среди их друзей принято места распределять путем жребия?
Решение . Обозначим через А событие «исполнение желания Тани и Вани». 10 человек могут усесться за стол 10! разными способами. Сколько же из этих n = 10! равновозможных способов благоприятны для Тани и Вани? Таня и Ваня, сидя рядом, могут занять 20 разных позиций. В то же время восьмерка их друзей может сесть за стол 8! разными способами, поэтому m = 20∙8!. Следовательно,
.
Задача 1.5 . Группа из 5 женщин и 20 мужчин выбирает трех делегатов. Считая, что каждый из присутствующих с одинаковой вероятностью может быть выбран, найти вероятность того, что выберут двух женщин и одного мужчину.
Решение . Общее число равновозможных исходов испытания равно числу способов, которыми можно выбрать трех делегатов из 25 человек, т.е. . Подсчитаем теперь число благоприятствующих случаев, т.е. число случаев, при которых имеет место интересующее нас событие. Мужчина-делегат может быть выбран двадцатью способами. При этом остальные два делегата должны быть женщинами, а выбрать двух женщин из пяти можно . Следовательно, . Поэтому
.
Задача 1.6. Четыре шарика случайным образом разбрасываются по четырем лункам, каждый шарик попадает в ту или другую лунку с одинаковой вероятностью и независимо от других (препятствий к попаданию в одну и ту же лунку нескольких шариков нет). Найти вероятность того, что в одной из лунок окажется три шарика, в другой - один, а в двух остальных лунках шариков не будет.
Решение. Общее число случаев n =4 4 . Число способов, которыми можно выбрать одну лунку, где будут три шарика, . Число способов, которыми можно выбрать лунку, где будет один шарик, . Число способов, которыми можно выбрать из четырех шариков три, чтобы положить их в первую лунку, . Общее число благоприятных случаев . Вероятность события:
Задача 1.7. В ящике 10 одинаковых шаров, помеченных номерами 1, 2, …, 10. На удачу извлечены шесть шаров. Найти вероятность того, что среди извлечённых шаров окажутся: а) шар №1; б) шары №1 и №2.
Решение . а) Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь шесть шаров из десяти, т.е.
Найдём число исходов, благоприятствующих интересующему нас событию: среди отобранных шести шаров есть шар №1 и, следовательно, остальные пять шаров имеют другие номера. Число таких исходов, очевидно, равно числу способов, которыми можно отобрать пять шаров из оставшихся девяти, т.е.
Искомая вероятность равна отношению числа исходов, благоприятствующих рассматриваемому событию, к общему числу возможных элементарных исходов:
б) Число исходов, благоприятствующих интересующему нас событию (среди отобранных шаров есть шары №1 и №2, следовательно, четыре шара имеют другие номера), равно числу способов, которыми можно извлечь четыре шаров из оставшихся восьми, т.е. Искомая вероятность

1.2.3. Статистическая вероятность

Статистическое определение вероятности используется в случае, когда исходы опыта не являются равновозможными.
Относительная частота события А определяется равенством:
,
где m – число испытаний, в которых событие А наступило, n – общее число произведенных испытаний.
Я. Бернулли доказал, что при неограниченном увеличении числа опытов относительная частота появления события будет практически сколь угодно мало отличаться от некоторого постоянного числа. Оказалось, что это постоянное число есть вероятность появления события. Поэтому, естественно, относительную частоту появления события при достаточно большом числе испытаний называть статистической вероятностью в отличие от ранее введенной вероятности.
Пример 1.8 . Как приближенно установить число рыб в озере?
Пусть в озере х рыб. Забрасываем сеть и, допустим, находим в ней n рыб. Каждую из них метим и выпускаем обратно. Через несколько дней в такую же погоду и в том же месте забрасываем ту же самую сеть. Допустим, что находим в ней m рыб, среди которых k меченных. Пусть событие А – «пойманная рыба мечена». Тогда по определению относительной частоты .
Но если в озере х рыб и мы в него выпустили n меченых, то .
Так как Р * (А ) » Р (А ), то .

1.2.4. Операции над событиями. Теорема сложения вероятностей

Суммой , или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий (в одном и том же испытании).
Сумма А 1 + А 2 + … + А n обозначается так:
или .
Пример . Бросаются две игральные кости. Пусть событие А состоит в выпадении 4 очков на 1 кости, а событие В – в выпадении 5 очков на другой кости. События А и В совместны. Поэтому событие А +В состоит в выпадении 4 очков на первой кости, или 5 очков на второй кости, или 4 очков на первой кости и 5 очков на второй одновременно.
Пример. СобытиеА – выигрыш по 1 займу, событие В – выигрыш по 2 займу. Тогда событие А+В – выигрыш хотя бы по одному займу (возможно по двум сразу).
Произведением или пересечением нескольких событий называется событие, состоящее в совместном появлении всех этих событий (в одном и том же испытании).
Произведение В событий А 1 , А 2 , …, А n обозначается так:
.
Пример. События А и В состоят в успешном прохождении I и II туров соответственно при поступлении в институт. Тогда событие А ×В состоит в успешном прохождении обоих туров.
Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию. Пусть событие А есть попадание точки в область А , а событие В – попадание точки в область В . Тогда событие А+В есть попадание точки в объединение этих областей (рис. 2.1), а событие А В есть попадание точки в пересечение этих областей (рис. 2.2).

Рис. 2.1 Рис. 2.2
Теорема . Если события A i (i = 1, 2, …, n ) попарно несовместны, то вероятность суммы событий равна сумме вероятностей этих событий:
.
Пусть А и Ā – противоположные события, т.е. А + Ā = Ω, где Ω – достоверное событие. Из теоремы сложения вытекает, что
Р(Ω) = Р (А ) + Р (Ā ) = 1, поэтому
Р (Ā ) = 1 – Р (А ).
Если события А 1 и А 2 совместны, то вероятность суммы двух совместных событий равна:
Р (А 1 + А 2) = Р (А 1) + Р (А 2) – Р(А 1 ×А 2).
Теоремы сложения вероятностей позволяют перейти от непосредственного подсчета вероятностей к определению вероятностей наступления сложных событий.
Задача 1.8 . Стрелок производит один выстрел по мишени. Вероятность выбить 10 очков (событие А ), 9 очков (событие В ) и 8 очков (событие С ) равны соответственно 0,11; 0,23; 0,17. Найти вероятность того, что при одном выстреле стрелок выбьет менее 8 очков (событие D ).
Решение . Перейдем к противоположному событию – при одном выстреле стрелок выбьет не менее 8 очков. Событие наступает, если произойдет А или В , или С , т.е. . Так как события А, В , С попарно несовместны, то, по теореме сложения,
, откуда .
Задача 1.9 . От коллектива бригады, которая состоит из 6 мужчин и 4 женщин, на профсоюзную конференцию выбирается два человека. Какова вероятность, что среди выбранных хотя бы одна женщина (событие А ).
Решение . Если произойдет событие А , то обязательно произойдет одно из следующих несовместных событий: В – «выбраны мужчина и женщина»; С – «выбраны две женщины». Поэтому можно записать: А=В+С . Найдем вероятность событий В и С . Два человека из 10 можно выбрать способами. Двух женщин из 4 можно выбрать способами. Мужчину и женщину можно выбрать 6 ×4 способами. Тогда . Так как события В и С несовместны, то, по теореме сложения,
Р(А) = Р(В + С) = Р(В) + Р(С ) = 8/15 + 2/15 = 2/3.
Задача 1.10. На стеллаже в библиотеке в случайном порядке расставлено 15 учебников, причем пять из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете (событие А ).
Решение . Первый способ. Требование – хотя бы один из трех взятых учебников в переплете – будет осуществлено, если произойдет любое из следующих трех несовместных событий: В – один учебник в переплете, С – два учебника в переплете, D – три учебника в переплете.
Интересующее нас событие А можно представить в виде суммы событий: A=B+C+D . По теореме сложения,
P(A) = P(B) + P(C) + P(D). (2.1)
Найдем вероятность событий B, C и D (см комбинаторные схемы):

Представив эти вероятности в равенство (2.1), окончательно получим
P(A) = 45/91 + 20/91 + 2/91 = 67/91.
Второй способ. Событие А (хотя бы один из взятых трех учебников имеет переплет) и Ā (ни один из взятых учебников не имеет переплета) – противоположные, поэтому P(A) + P(Ā ) = 1 (сумма вероятностей двух противоположных событий равна 1). Отсюда P(A ) = 1 – P(Ā). Вероятность появления события Ā (ни один из взятых учебников не имеет переплета)
Искомая вероятность
P(A ) = 1 – P(Ā ) = 1 – 24/91 = 67/91.

1.2.5. Условная вероятность. Теорема умножения вероятностей

Условной вероятностью Р(В /А ) называется вероятность события В, вычисленная в предположении, что событие А уже наступило.
Теорема . Вероятность совместного появления двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Р(А В) = Р(А )∙Р(В /А ). (2.2)
Два события называются независимыми, если появление любого из них не изменяет вероятность появления другого, т.е.
Р(А) = Р(А/В ) или Р(В ) = Р(В /А ). (2.3)
Если события А и В независимы, то из формул (2.2) и (2.3) следует
Р(А В) = Р(А )∙Р(В ). (2.4)
Справедливо и обратное утверждение, т.е. если для двух событий выполняется равенство (2.4), то эти события независимы. В самом деле, из формул (2.4) и (2.2) вытекает
Р(А В) = Р(А )∙Р(В ) = Р(А ) ×Р(В /А ), откуда Р(А ) = Р(В /А ).
Формула (2.2) допускает обобщение на случай конечного числа событий А 1 , А 2 ,…,А n :
Р(А 1 ∙А 2 ∙…∙А n )=Р(А 1)∙Р(А 2 /А 1)∙Р(А 3 /А 1 А 2)∙…∙Р(А n /А 1 А 2 …А n -1).
Задача 1.11 . Из урны, в которой 5 белых и 10 черных шаров, вынимают подряд два шара. Найти вероятность того, что оба шара белые (событие А ).
Решение . Рассмотрим события: В – первый вынутый шар белый; С – второй вынутый шар белый. Тогда А = ВС .
Опыт можно провести двумя способами:
1) с возвращением: вынутый шар после фиксации цвета возвращается в урну. В этом случае события В и С независимы:
Р(А) = Р(В )∙Р(С ) = 5/15 ×5/15 = 1/9;
2) без возвращения: вынутый шар откладывается в сторону. В этом случае события В и С зависимы:
Р(А) = Р(В )∙Р(С /В ).
Для события В условия прежние, , а для С ситуация изменилась. Произошло В , следовательно в урне осталось 14 шаров, среди которых 4 белых .
Итак, .
Задача 1.12 . Среди 50 электрических лампочек 3 нестандартные. Найти вероятность того, что две взятые одновременно лампочки нестандартные.
Решение . Рассмотрим события: А – первая лампочка нестандартная, В – вторая лампочка нестандартная, С – обе лампочки нестандартные. Ясно, что С = А В . Событию А благоприятствуют 3 случая из 50 возможных, т.е. Р(А ) = 3/50. Если событие А уже наступило, то событию В благоприятствуют два случая из 49 возможных, т.е. Р(В /А ) = 2/49. Следовательно,
.
Задача 1.13 . Два спортсмена независимо друг от друга стреляют по одной мишени. Вероятность попадания в мишень первого спортсмена равна 0,7, а второго – 0,8. Какова вероятность того, что мишень будет поражена?
Решение . Мишень будет поражена, если в нее попадет либо первый стрелок, либо второй, либо оба вместе, т.е. произойдет событие А+В , где событие А заключается в попадании в мишень первым спортсменом, а событие В – вторым. Тогда
Р(А +В )=Р(А )+Р(В )–Р(А В )=0, 7+0, 8–0, 7∙0,8=0,94.
Задача 1.14. В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что два учебника окажутся в переплете.
Решение . Введем обозначения событий: A – первый взятый учебник имеет переплет, В – второй учебник имеет переплет. Вероятность того, что первый учебник имеет переплет,
P(A ) = 3/6 = 1/2.
Вероятность того, что второй учебник имеет переплет, при условии, что первый взятый учебник был в переплете, т.е. условная вероятность события В , такова: P(B /А) = 2/5.
Искомая вероятность того, что оба учебника имеют переплет, по теореме умножения вероятностей событий равна
P(AB ) = P(A ) ∙ P(B /А) = 1/2·∙ 2/5 = 0,2.
Задача 1.15. В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобраны три человека. Найти вероятность того, что все отобранные лица окажутся мужчинами.
Решение . Введем обозначения событий: A – первым отобран мужчина, В – вторым отобран мужчина, С – третьим отобран мужчина. Вероятность того, что первым будет отобран мужчина, P(A ) = 7/10.
Вероятность того, что вторым отобран мужчина, при условии, что первым уже был отобран мужчина, т.е. условная вероятность события В следующая: P(B/А ) = 6/9 = 2/3.
Вероятность того, что третьим будет отобран мужчина, при условии, что уже отобраны двое мужчин, т.е. условная вероятность события С такова: P(C /АВ ) = 5/8.
Искомая вероятность того, что все три отобранных лица окажутся мужчинами, P(ABC) = P(A ) P(B /А ) P(C /АВ ) = 7/10 · 2/3 · 5/8 = 7/24.

1.2.6. Формула полной вероятности и формула Байеса

Пусть B 1 , B 2 ,…, B n – попарно несовместные события (гипотезы) и А – событие, которое может произойти только совместно с одним из них.
Пусть, кроме того, нам известны Р(B i ) и Р(А /B i ) (i = 1, 2, …, n ).
В этих условиях справедливы формулы:
(2.5)
(2.6)
Формула (2.5) называется формулой полной вероятности . По ней вычисляется вероятность события А (полная вероятность).
Формула (2.6) называется формулой Байеса . Она позволяет произвести пересчет вероятностей гипотез, если событие А произошло.
При составлении примеров удобно считать, что гипотезы образуют полную группу.
Задача 1.16 . В корзине яблоки с четырех деревьев одного сорта. С первого – 15% всех яблок, со второго – 35%, с третьего – 20%, с четвертого – 30%. Созревшие яблоки составляют соответственно 99%, 97%, 98%, 95%.
а) Какова вероятность того, что наугад взятое яблоко окажется спелым (событие А ).
б) При условии, что наугад взятое яблоко оказалось спелым, вычислить вероятность того, что оно с первого дерева.
Решение . а) Имеем 4 гипотезы:
B 1 – наугад взятое яблоко снято с 1-го дерева;
B 2 – наугад взятое яблоко снято с 2-го дерева;
B 3 – наугад взятое яблоко снято с 3-го дерева;
B 4 – наугад взятое яблоко снято с 4-го дерева.
Их вероятности по условию: Р(B 1) = 0,15; Р(B 2) = 0,35; Р(B 3) = 0,2; Р(B 4) = 0,3.
Условные вероятности события А :
Р(А /B 1) = 0,99; Р(А /B 2) = 0,97; Р(А /B 3) = 0,98; Р(А /B 4) = 0,95.
Вероятность того, что наудачу взятое яблоко окажется спелым, находится по формуле полной вероятности:
Р(А )=Р(B 1)∙Р(А /B 1)+Р(B 2)∙Р(А /B 2)+Р(B 3)∙Р(А /B 3)+Р(B 4)∙Р(А /B 4)=0,969.
б) Формула Байеса для нашего случая имеет вид:
.
Задача 1.17. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
Решение . Обозначим через А событие – извлечен белый шар. Возможны следующие предположения (гипотезы) о первоначальном составе шаров: B 1 – белых шаров нет, В 2 – один белый шар, В 3 – два белых шара.
Поскольку всего имеется три гипотезы, и сумма вероятностей гипотез равна 1 (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3,т.е.
P(B 1) = P(B 2) = P(B 3) = 1/3.
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, Р(А /B 1)=1/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне был один белый шар, Р(А /B 2)=2/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне было два белых шара Р(А /B 3)=3/ 3=1.
Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:
Р (А )=Р(B 1)∙Р(А /B 1)+Р(B 2)∙Р(А /B 2)+Р(B 3)∙Р(А /B 3)=1/3·1/3+1/3·2/3+1/3·1=2/3.
Задача 1.18 . Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй – 84%. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.
Решение . Обозначим через А событие – деталь отличного качества. Можно сделать два предположения: B 1 – деталь произведена первым автоматом, причем (поскольку первый автомат производит вдвое больше деталей, чем второй) Р(А /B 1) = 2/3; B 2 – деталь произведена вторым автоматом, причем P(B 2) = 1/3.
Условная вероятность того, что деталь будет отличного качества, если она произведена первым автоматом,Р(А /B 1)=0,6.
Условная вероятность того, что деталь будет отличного качества, если она произведена вторым автоматом,Р(А /B 1)=0,84.
Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна
Р(А )=Р(B 1) ∙Р(А /B 1)+Р(B 2) ∙Р(А /B 2)=2/3·0,6+1/3·0,84 = 0,68.
Искомая вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна

Задача 1.19 . Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равны 20, 15, 10. Из выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Детали возвращают в партию и вторично из этой же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.
Решение . Обозначим через А событие – в каждом из двух испытаний (с возвращением) была извлечена стандартная деталь. Можно сделать три предположения (гипотезы): B 1 – детали извлекаются из первой партии, В 2 – детали извлекаются из второй партии, В 3 – детали извлекаются из третьей партии.
Детали извлекались наудачу из взятой партии, поэтому вероятности гипотез одинаковы:  P(B 1) = P(B 2) = P(B 3) = 1/3.
Найдем условную вероятность Р(А /B 1), т.е. вероятность того, что из первой партии будут последовательно извлечены две стандартные детали. Это событие достоверно, т.к. в первой партии все детали стандартны, поэтому Р(А /B 1) = 1.
Найдем условную вероятность Р(А /B 2), т.е. вероятность того, что из второй партии будут последовательно извлечены (с возвращением) две стандартные детали: Р(А /B 2)= 15/20 ∙ 15/20 = 9/16.
Найдем условную вероятность Р(А /B 3), т.е. вероятность того, что из третьей партии будут последовательно извлечены (с возвращением) две стандартные детали: Р(А /B 3) = 10/20 · 10/20 = 1/4.
Искомая вероятность того, что обе извлеченные стандартные детали взяты из третьей партии, по формуле Бейеса равна

1.2.7. Повторные испытания

Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А. В разных независимых испытаниях событие А может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие А имеет одну ту же вероятность.
Пусть производится п независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Условимся считать, что вероятность события А в каждом испытании одна и та же, а именно равна р. Следовательно, вероятность ненаступления события А в каждом испытании также постоянна и равна 1–р. Такая вероятностная схема называется схемой Бернулли . Поставим перед собой задачу вычислить вероятность того, что при п испытаниях по схеме Бернулли событие А осуществится ровно k раз (k – число успехов) и, следовательно, не осуществится п– раз. Важно подчеркнуть, что не требуется, чтобы событие А повторилось ровно k раз в определенной последовательности. Искомую вероятность обозначим Р п (k ). Например, символ Р 5 (3) означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и, следовательно, не наступит 2 раза.
Поставленную задачу можно решить с помощью так называемой формулы Бернулли, которая имеет вид:
.
Задача 1.20. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р =0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
Решение. Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна и равнар =0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q= 1–р =1–0,75=0,25.
Искомая вероятность по формуле Бернулли равна
.
Задача 1.21 . Два равносильных шахматиста играют в шахматы. Что вероятнее: выиграть две партии из четырех или три партии из шести (ничьи во внимание не принимаются)?
Решение . Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2, следовательно, вероятность проигрыша q также равна 1/2. Т.к. во всех партиях вероятность выигрыша постоянна и безразлична, в какой последовательности будут выиграны партии, то применима формула Бернулли.
Найдем вероятность того, что две партии из четырех будут выиграны:

Найдем вероятность того, что будут выиграны три партии из шести:

Т.к. P 4 (2) > P 6 (3), то вероятнее выиграть две партии из четырех, чем три из шести.
Однакоможно видеть, что пользоваться формулой Бернулли при больших значениях n достаточно трудно, так как формула требует выполнения действий над громадными числами и поэтому в процессе вычислений накапливаются погрешности; в итоге окончательный результат может значительно отличаться от истинного.
Для решения этой проблемы существуют несколько предельных теорем, которые используются для случая большого числа испытаний.
1. Теорема Пуассона
При проведении большого числа испытаний по схеме Бернулли (при n => ∞) и при малом числе благоприятных исходов k (при этом предполагается, что вероятность успеха p мала), формула Бернулли приближается к формуле Пуассона
.
Пример 1.22. Вероятность брака при выпуске предприятием единицы продукции равна p =0,001. Какая вероятность, что при выпуске 5000 единиц продукции из них будет менее 4 бракованных (событие А Решение . Т.к. n велико, воспользуемся локальной теоремой Лапласа:

Вычислим x :
Функция – четная, поэтому φ(–1,67) = φ(1,67).
По таблице приложения П.1 найдем φ(1,67) = 0,0989.
Искомая вероятность P 2400 (1400) = 0,0989.
3. Интегральная теорема Лапласа
Если вероятность р появления события A в каждом испытании по схеме Бернулли постоянна и отлична от нуля и единицы, то при большом числе испытаний n , вероятность Р п (k 1 , k 2) появления события A в этих испытаниях от k 1 доk 2 раз приближенно равна
Р п (k 1 , k 2) = Φ (x"" ) – Φ (x" ), где
– функция Лапласа,

Определенный интеграл, стоящий в функции Лапласа не вычисляется на классе аналитических функций, поэтому для его вычисления используется табл. П.2, приведенная в приложении.
Пример 1.24. Вероятность появления события в каждом из ста независимых испытаний постоянна и равна p = 0,8. Найти вероятность того, что событие появится: a) не менее 75 раз и не более 90 раз; б) не менее 75 раз; в) не более 74 раз.
Решение . Воспользуемся интегральной теоремой Лапласа:
Р п (k 1 , k 2) = Φ (x"" ) – Φ(x" ), где Ф(x ) – функция Лапласа,

а) По условию, n = 100, p = 0,8, q = 0,2, k 1 = 75, k 2 = 90. Вычислим x"" и x" :


Учитывая, что функция Лапласа нечетна, т.е. Ф(-x ) = – Ф( x ), получим
P 100 (75;90) = Ф (2,5) – Ф(–1,25) = Ф(2,5) + Ф(1,25).
По табл. П.2. приложения найдем:
Ф(2,5) = 0,4938; Ф(1,25) = 0,3944.
Искомая вероятность
P 100 (75; 90) = 0,4938 + 0,3944 = 0,8882.
б) Требование, чтобы событие появилось не менее 75 раз, означает, что число появлений события может быть равно 75, либо 76, …, либо 100. Т.о., в рассматриваемом случае следует принять k 1 = 75, k 2 = 100. Тогда

.
По табл. П.2. приложения найдем Ф(1,25) = 0,3944; Ф(5) = 0,5.
Искомая вероятность
P 100 (75;100) = (5) – (–1,25) = (5) + (1,25) = 0,5 + 0,3944 = 0,8944.
в) Событие – «А появилось не менее 75 раз» и «А появилось не более 74 раз» противоположны, поэтому сумма вероятностей этих событий равна 1. Следовательно, искомая вероятность
P 100 (0;74) = 1 – P 100 (75; 100) = 1 – 0,8944 = 0,1056.

Учебник по теории вероятности: содержание

Глава 1. Случайные события. Вычисление вероятности

    1.1. Элементы комбинаторики

    1.2. Классическое определение вероятности

    1.3. Геометрическое определение вероятности

    1.4. Сложение и умножение вероятностей

    1.5. Условная вероятность

    1.6. Формула полной вероятности и формула Байеса

    1.7. Независимые испытания. Формула Бернулли

    1.8. Наивероятнейшее число успехов

    1.9. Формула Пуассона

    1.10. Теоремы Муавра-Лапласа

1.1. Элементы комбинаторики

Рассмотрим некоторое множество Х , состоящее из n элементов . Будем выбирать из этого множества различные упорядоченные подмножества из k элементов.

Размещением из n элементов множества Х по k элементам назовем любой упорядоченный набор элементов множества Х .

Если выбор элементов множества из Х происходит с возвращением, т.е. каждый элемент множества Х может быть выбран несколько раз, то число размещений из n по k находится по формуле (размещения с повторениями ).

Если же выбор делается без возвращения, т.е. каждый элемент множества Х можно выбирать только один раз, то количество размещений из n по k обозначается и определяется равенством

(размещения без повторений ).


Пример.
Пусть даны шесть цифр: 1; 2; 3; 4; 5; 6. Определить сколько трехзначных чисел можно составить из этих цифр.

Решение. Если цифры могут повторяться, то количество трехзначных чисел будет . Если цифры не повторяются, то .

Пример. Студенты института изучают в каждом семестре по десять дисциплин. В расписание занятий включаются каждый день по 3 дисциплины. Сколько различных расписаний может составить диспетчерская?

Решение . Расписание на каждый день может отличаться либо предметами, либо порядком расположения этих предметов, поэтому имеем размещения:

Частный случай размещения при n =k называется перестановкой из n элементов. Число всех перестановок из n элементов равно
.

Пример . 30 книг стоит на книжной полке, из них 27 различных книг и одного автора три книги. Сколькими способами можно расставить эти книги на полке так, чтобы книги одного автора стояли рядом?

Решение. Будем считать три книги одного автора за одну книгу, тогда число перестановок будет . А три книги можно переставлять между собой способами, тогда по правилу произведения имеем, что искомое число способов равно: *=3!*28!

Пусть теперь из множества Х выбирается неупорядоченное подмножество (порядок элементов в подмножестве не имеет значения). Сочетаниями из n элементов по k называются подмножества из k элементов, отличающиеся друг от друга хотя бы одним элементом. Общее число всех сочетаний из n по k обозначается и равно
.

Справедливы равенства: , , .

Пример. В группе из 27 студентов нужно выбрать трех дежурных. Сколькими способами можно это сделать?

Решение. Так как порядок студентов не важен, используем формулу для числа сочетаний: .

При решении задач комбинаторики используют следующие правила:

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.

Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана m*n способами.

Пример. Наряд студентки состоит из блузки, юбки и туфель. Девушка имеет в своем гардеробе четыре блузки, пять юбок и трое туфель. Сколько нарядов может иметь студентка?

Решение. Пусть сначала студентка выбирает блузку. Этот выбор может быть совершен четырьмя способами, так как студентка имеет четыре блузки, затем пятью способами произойдет выбор юбки и тремя способами выбор туфель. По принципу умножения получается 4*5*3=60 нарядов (комбинаций).

1.2. Классическое определение вероятности

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события А , если появление этого события влечет за собой появление события А .

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместных элементарных исходов, образующих полную группу

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству .

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаевm =n =10. Следовательно, Р (А )=1. Событие А достоверное .

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m =0, n =15. Следовательно, искомая вероятность р =0. Событие, заключающееся в вынимании синего шара, невозможное .

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение . Количество элементарных исходов (количество карт) n =36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А , m =9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е.
.

Найдем число исходов, благоприятствующих интересующему нас событию: трех женщин можно выбрать из четырех способами; при этом остальные четыре человека должны быть мужчинами, их можно отобрать способами. Следовательно, число благоприятствующих исходов равно .

Искомая вероятность
.

1.3. Геометрическое определение вероятности

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением:
,
где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние x от центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов – это отрезок . Пересечение круга с полосой произойдет в том случае, если его центр попадет в полосу, т.е. , или будет находится от края полосы на расстоянии меньшем чем радиус, т.е. .

Для искомой вероятности получаем: .

1.4. Сложение и умножение вероятностей

Событие А называется частным случаем события В , если при наступлении А наступает и В . То, что А является частным случаем В , записываем .

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записываем А = В .

Суммой событий А и В называется событие А + В , которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двухнесовместных событий равна сумме вероятностей этих событий.

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

.

Если случайные события образуют полную группу несовместных событий, то имеет место равенство

Произведением событий А и В называется событие АВ , которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными , если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

События событий А и В называются независимыми , если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В , если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности (см. следующий раздел).

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.

Решение. Обозначим события: А – вынули белый шар из первого ящика,
;

Вынули черный шар из первого ящика,
;

В – белый шар из второго ящика,
;

Черный шар из второго ящика,
.

Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) хотя бы одного попадания; г) одного попадания.

Решение.

Пусть А – попадание первого стрелка, ;

В – попадание второго стрелка, .

Тогда - промах первого, ;

Промах второго, .

Найдем нужные вероятности.

а) АВ – двойное попадание,

б) – двойной промах, .

в) А +В – хотя бы одно попадание,

г) – одно попадание,

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Решение.

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий? Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий , независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

Если события имеют одинаковую вероятность , то формула принимает простой вид:

.

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p 1 = 0,8;p 2 = 0,7; p 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:

, ,

Искомая вероятность .

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События "машина работает" и "машина не работает" (в данный момент) - противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие "при n выстрелах стрелок попадает в цель хотя бы один раз". События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .

Приняв во внимание, что, по условию, (следовательно, ), получим

Прологарифмируем это неравенство по основанию 10:

Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.

1.5. Условная вероятность

Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной . Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А .

Условной вероятностью (два обозначения) называют вероятность события В , вычисленную в предположении, что событие А уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

В частности, отсюда получаем
.

Пример. В урне находятся 3 белых шара и 2 черных. Из урны вынимается один шар, а затем второй. Событие В – появление белого шара при первом вынимании. Событие А – появление белого шара при втором вынимании.

Решение. Очевидно, что вероятность события А , если событие В произошло, будет
.
Вероятность события А при условии, что событие В не произошло, будет
.

Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность .

Этот же результат можно получить по формуле
.

Действительно, вероятность появления белого шара при первом испытании
.

Найдем вероятность того, что в первом испытании появится черный шар, а во втором - белый. Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений . Из этого числа исходов событию благоприятствуют исходов. Следовательно, .

Искомая условная вероятность

Результаты совпали.

Пример. В трамвайном парке имеются 15 трамваев маршрута №1 и 10 трамваев маршрута №2. Какова вероятность того, что вторым по счету на линию выйдет трамвай маршрута №1?

Решение . Пусть А - событие, состоящее в том, что на линию вышел трамвай маршрута №1, В - маршрута №2.

Рассмотрим все события, которые могут при этом быть (в условиях нашей задачи): . Из них нас будут интересовать только первое и третье, когда вторым выйдет трамвай маршрута №1.

Так как все эти события совместны, то:

;

;

отсюда искомая вероятность

Пример. Какова вероятность того, что 2 карты, вынутые из колоды в 36 карт, окажутся одной масти?

Решение . Сначала подсчитаем вероятность того, что две карты окажутся одной определенной масти (например «пики»). Пусть А - появление первой карты такой масти, В - появление второй карты той же масти. Событие В зависит от события А , т.к. его вероятность меняется от того, произошло или нет событие А . Поэтому придется воспользоваться теоремой умножения в ее общей форме:

,
где (после вынимания первой карты осталось 35 карт, из них той же масти, что и первая - 8).

Получаем
.

События, состоящие в том, что будут вынуты две карты масти «пики», масти «треф» и т.д., несовместны друг с другом. Следовательно, для нахождения вероятности их объединения воспользуемся теоремой сложения:
.

1.6. Формула полной вероятности и формула Байеса

Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий , то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности .

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами . Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса ). Вероятности гипотез называются апостериорными вероятностями , тогда как -априорными вероятностями .

Пример. В магаз поступила новая продукция с 3х предприятий.20%-продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

А 1 - на линию огня вызван первый стрелок,

А 2 - на линию огня вызван второй стрелок,

А 1 - на линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: – взятая наудачу деталь обработана на -ом станке, .

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

А так как гипотезы образуют полную группу, то .

Решив полученную систему уравнений, найдем: .

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная:

Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.

б) Пусть известно, что взятая наудачу деталь – бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:

Таким образом, в общей массе бракованных деталей на конвейере доля первого станка составляет 33%, второго – 39%, третьего – 28%.

1.7. Независимые испытания. Формула Бернулли

При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли .

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода : либо появится событие А , либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события А в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события А в единичном испытании буквой р, т.е. , а вероятность противоположного события (событие А не наступило) - буквой .

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражаетсяформулой Бернулли

Распределение числа успехов (появлений события) носит название биномиального распределения .

Пример. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.

Решение. Событие А – достали белый шар. Тогда вероятности
, .
По формуле Бернулли требуемая вероятность равна
.

Пример. Определить вероятность того, что в семье, имеющей 5 деталей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки
, тогда .

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:

, ,

, .

Следовательно, искомая вероятность

.

Пример. Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными.

Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество. Событие А - «появление нестандартной детали», его вероятность , тогда . Отсюда по формуле Бернулли находим
.

Пример. При каждом отдельном выстреле из орудия вероятность поражения цели равна 0,9. Найти вероятность того, что из 20 выстрелов число удачных будет не менее 16 и не более 19.

Решение. Вычисляем по формуле Бернулли:

Пример. Независимые испытания продолжаются до тех пор, пока событие А не произойдет k раз. Найти вероятность того, что потребуется n испытаний (n ³ k), если в каждом из них .

Решение. Событие В – ровно n испытаний до k -го появления события А – есть произведение двух следующий событий:

D – в n -ом испытании А произошло;

С – в первых (n–1) -ом испытаниях А появилось (к-1) раз.

Теорема умножения и формула Бернулли дают требуемую вероятность:

Надо заметить, что использование биномиального закона зачастую связано с вычислительными трудностями. Поэтому с возрастанием значений n и m становится целесообразным применение приближенных формул (Пуассона, Муавра-Лапласа), которые будут рассмотрены в следующих разделах.

1.8. Наивероятнейшее число успехов

Биномиальное распределение (распределение по схеме Бернулли) позволяет, в частности, установить, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов (появлений события) имеет вид:

Так как , то эти границы отличаются на 1. Поэтому , являющееся целым числом, может принимать либо одно значение, когда целое число () , то есть когда (а отсюда и ) нецелое число, либо два значения, когда целое число.

Пример. При автоматической наводке орудия вероятность попадания по быстро движущейся цели равна 0,9. Найти наивероятнейшее число попаданий при 50 выстрелах.

Решение. Здесь . Поэтому имеем неравенства:

Следовательно, .

Пример. Данные длительной проверки качества выпускаемых стандартных деталей показали, что в среднем брак составляет 7,5%. Определить наиболее вероятное число вполне исправных деталей в партии из 39 штук.

Решение. Обозначая вероятность выпуска исправной детали через , будем иметь и (получение бракованной детали и получение исправной детали - события противоположные). Так как здесь n= 39, то искомое число можно найти из неравенств:

Отсюда наивероятнейшее число исправных деталей равно 36 или 37.

Неравенства для наивероятнейшего числа успехов позволяют решить и обратную задачу: по данному и известному значению р определить общее число n всех испытаний.

Пример. При каком числе выстрелов наивероятнейшее число попаданий равно 16, если вероятность попадания в отдельном выстреле составляет 0,7? Т А к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность (по сравнению с исходной формулой Бернулли). ., находим, вероятности выводится по ... 45 Сама теория достаточно сложна и подробно излагается лишь в специальных учебниках по корпоративным...

  • Менеджмент учебник санкт-петербург издательство «союз»

    Учебник

    ... по аппарату построения (форма); – по характеру моделируемых объектов содержание ). По ... вероятности во всех случаях, то учебники по теории вероятностей (а заодно и данная глава ... Теория вероятностей утверждает, что случайные события , ... вычислений . ...

  • Приказ № от 2014 г. Рабочая программа по математике класс: 5 (базовый уровень)

    Рабочая программа

    А. Г. Математика. 6 кл. Учебники по содержанию и по стилю выстроены так, чтобы... Глава 6. 4 2 2 - Введение в вероятность . §53 Достоверные, невозможные и случайные события Вероятность наступления событий . Достоверные, невозможные и случайные события ...

  • Проект основной образовательной программы мкоу бутурлиновская сош №1 Бутурлиновского муниципального района Воронежской области на 2012-2017гг

    Основная образовательная программа

    ... Случайные события и вероятность . Понятие о случайном опыте и случайном событии . Частота случайного события . Статистический подход к понятию вероятности . Вероятности противоположных событий . Достоверные и невозможные события . Равновозможность событий ...

  • В этой главе приводится краткий обзор основных понятий и результатов теории вероятностей, которые используются в курсе эконометрики.

    Теория вероятностей исследует закономерности случайных явлений, изучает случайные величины, оценивает вероятности случайных событий.

    Одно из основных понятий теории вероятностей – случайное событие . Под событием понимается любое явление, которое происходит в результате осуществления определенного комплекса условий. В теории вероятностей любое событие рассматривается как результат некоторого эксперимента , т.е. осуществления определенного комплекса условий (синонимами термина эксперимент являются опыт, испытание, наблюдение). В связи с этим часто вместо термина событие используется термин исход . Эксперимент, результат которого не предсказуем заранее в силу различных причин, называется случайным (вероятностным ). В частности, любое действие в экономике по своей сути является случайным экспериментом.

    Событие, которое может произойти или не произойти в условиях данного эксперимента, называется случайным . Если событие обязательно произойдет в условиях эксперимента, то оно называется достоверным . Событие, называется невозможным , если в условиях данного эксперимента оно никогда не произойдет.

    Например, создание какой-либо фирмы в контексте получения прибыли является случайным экспериментом, поскольку результатом такого эксперимента может быть только случайное событие, т.е. прибыль может быть, а может и не быть. То, что спрос на бытовую технику упадет при резком снижении доходов населения, в экономике рассматривается как достоверное событие. То, что увеличение спроса на автомобили приведет к снижению их цены, рассматривается как невозможное событие.

    В теории вероятностей события обычно обозначаются большими латинскими буквами, например A , B , C . Достоверное событие обозначается буквой W, а невозможное событие – символом Æ.

    Следует отметить, что в теории вероятностей рассматриваются только такие эксперименты, которые можно повторить (воспроизвести) при неизменном комплексе условий произвольное число раз (по крайней мере, теоретически). В связи с этим, в теории вероятностей имеют дело с повторением испытаний двух типов: 1) повторение испытаний для одного и того же объекта; 2) испытание многих сходных объектов. Например, можно исследовать продукцию, выпущенную каким-либо одним станком за определенный период времени, а можно исследовать продукцию, выпущенную несколькими одинаковыми станками, но в фиксированный момент времени. С точки зрения теории вероятностей такие серии экспериментов эквивалентны.



    Чтобы охарактеризовать вероятность события числом, нужно установить единицу измерения вероятности. Здесь поступают следующим образом: достоверному событию приписывают вероятность, равную единице; невозможному – равную нулю. Таким образом, вероятность P (A ) события А должна удовлетворять следующим условиям:

    1 о. P (A )=1, если А достоверное событие ;

    2 о. P (A )=0, если А невозможное событие ;

    3 о. 0<P (A )<1, если А случайное событие .

    При различных подходах к вероятности, величина P (A ) может трактоваться по-разному. В экономических исследованиях часто используются статистическое определение вероятности , т.е. под вероятностью события A понимается величина

    где под n понимается количество наблюдений результатов эксперимента, в которых событие A встречалось ровно m раз (конечно, число наблюдений n должно быть достаточно большим).

    Пример 2.1. Аналитик по инвестициям собирает данные об акциях и отмечает, выплачивались ли по ним дивиденды и увеличивались или нет акции в цене за интересующий его период времени. Собранные данные были представлены в виде таблицы:

    Если акция выбрана случайно из набора в 246 акций, то чему равна вероятность того, что: а) она из числа тех акций, которые увеличились в цене; б) по ней выплачены дивиденды; в) по ней не выплачены дивиденды, и она не выросла в цене.

    Решение. Используя статистическое определение вероятности, легко получаем:

    а) ; б) ; г) . â

    В задачах, использующих вероятностные количественные характеристики, приходится по вероятностям одних событий оценивать вероятности других событий. Для этого используются различные соотношения, в основе которых лежат теоремы сложения и умножения вероятностей.

    События называются несовместными , если они не могут наблюдаться одновременно в одном и том же эксперименте.

    Суммой событий A и B называется событие A+B , состоящее в появлении хотя бы одного из этих событий.

    Вероятность суммы несовместных событий A и B равна сумме вероятностей этих событий:

    Пример 2.2. В ходе исследования потребительского рынка проводили опрос потребителей. В частности, один из вопросов касался сорта зубной пасты, которую использует потребитель. Если известно, что 14% населения использует сорт A , а 9% – сорт B , то чему равна вероятность того, что случайно выбранный человек будет использовать одну из двух паст. (Предполагается, что в данный момент человек использует только одну пасту).

    Решение. Пусть A A , а B – событие, состоящее в том, что выбранный человек использует пасту сорта B. Поскольку события A и B несовместные по условию задачи, то, используя теорему сложения вероятностей (2.2), получим

    Если появление одного из событий не меняет вероятности появления другого события, то такие события называются независимыми .

    Произведением событий A и B называется событие , состоящее в появлении одновременно обоих этих событий.

    Вероятность произведения независимых событий A и B равна произведению вероятностей этих событий:

    Пример 2.3. Алмазы, возможно, вскоре станут использовать в качестве полупроводников в спутниках связи. Теория предсказывает, алмазные микросхемы будут более быстродействующими, термо- радиационностойкими, что особенно важно для приборов, работающих в космосе. По оценкам экспертов, вероятности этих трех событий равны 0,9; 0,9 и 0,95 соответственно. Предполагается, что обсуждением проекта по разработке алмазных микросхем стоит вести лишь в том случае, если имеется хотя бы 70% уверенности в том, что они будут обладать всеми тремя указанными свойствами. Должен ли обсуждаться проект?

    Решение. Пусть A – событие, состоящее в том, что алмазные микросхемы будут более быстродействующими, B – событие, состоящее в том, что алмазные микросхемы будут более термостойкими, C – событие, состоящее в том, что алмазные микросхемы будут более радиационностойкими. Поскольку события A , B и С независимы, то, используя теорему умножения вероятностей (2.3), получим

    Таким образом, поскольку 0,7695>0,7, то предложенный проект следует обсуждать. â

    В ряде случаев вероятности появления одних событий зависят от того, произошло другое событие или нет. Такие события называются зависимыми .

    Вероятность события A , вычисленная при условии, что имело место другое событие B , называется условной вероятностью события A и обозначается или .

    Вероятность произведения двух событий A и B равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже имело место:

    Пример 2.4. Одна из наиболее сложных проблем рыночных исследований – отказ потребителей отвечать на вопросы о потребительских предпочтениях, либо, если опрос проводится по месту жительства, – отсутствие их дома на момент опроса. Предположим, что исследователь рынка с вероятностью в 0,94 верит, респондент согласится отвечать на вопросы анкеты, если окажется дома. Он также полагает, что вероятность того, что этот человек будет дома, равна 0,65. Имея такие данные, оцените процент заполненных анкет.

    Решение. Пусть A – событие того, что респондент окажется дома. Вероятность этого события . Пусть B – событие того, что респондент согласится отвечать на вопросы. По условию задачи задана условная вероятность , т.е. вероятность того, что он согласится отвечать на вопросы, если он будет дома. Тогда, согласно теореме умножения вероятностей зависимых событий (2.4), вероятность того, что человек будет дома и согласится отвечать на вопросы, будет равна

    т.е. процент заполненных анкет будет равен 61%. â

    Вероятность суммы совместных событий A и B равна сумме вероятностей этих событий без вероятности их совместного появления:

    Пример 2.5. Вероятность того, что покупатель, собирающийся приобрести компьютер и пакет прикладных программ, приобретет только компьютер, равна 0,15. Вероятность того, что покупатель купит только пакет программ, равна 0,1. Вероятность того, что будут куплены и компьютер и пакет программ, равна 0,05. Чему равна вероятность того, что будут куплены или компьютер, или пакет программ, или компьютер и пакет программ вместе?

    Решение. Пусть A – событие того, что покупатель приобретет компьютер, B – событие того, что покупатель приобретет пакет программ, тогда AB – событие того, что покупатель приобретет и компьютер, и пакет программ. Следовательно, вероятность того, что будут куплены или компьютер, или пакет программ, или компьютер и пакет программ вместе, будет равна

    Два несовместных события A и называются противоположными , если при эксперименте одно из них обязательно произойдет. Иначе, для противоположных событий справедливы равенства:

    Решение. Пусть A i – событие того, что i -й прохожий купит книгу. Вероятность этого события , а противоположного события . Тогда вероятность того, что хотя бы один из 20 прохожих купят книгу, будет равна

    . â

    Если событие B может произойти только с одним из несовместных событий A 1 , A 2 ,…, A n , образующих полную группу, т.е. , то вероятность события B может быть найдена по формуле полной вероятности :

    Пример 2.7. Вероятность того, что новый товар будет пользоваться спросом на рынке, если конкурент не выпустит в продажу аналогичный продукт, равна 0,67. Вероятность того, что товар будет пользоваться спросом при наличии на рынке конкурирующего товара, равна 0,42. Вероятность того, что конкурирующая фирма выпустит аналогичный товар на рынок в течение интересующего нас периода, равна 0,35. Чему равна вероятность того, товар будет иметь успех?

    Решение. Пусть A 1 – событие того, что конкурент выпустит в продажу аналогичный продукт, A 2 – событие того, что конкурент не выпустит в продажу аналогичный продукт. Поскольку эти события несовместные и образуют полную группу, то и . По условию задачи и . В результате по формуле полной вероятности (2.9) находим

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то