Статистические ряды распределения, их значение и применение в статистике. Статистический ряд, гистограмма и порядок ее построения

Введение

С незапамятных времен человечество осуществляло учет многих сопутствующих его жизнедеятельности явлений и предметов и связанные с ним вычисления. Люди получали разносторонние, хотя и различающиеся полнотой на различных этапах общественного развития. Данные, учитывавшиеся повседневно в процессе принятия хозяйственных решений, а в обобщенном виде и на государственном уровне при определении русла экономической и социальной политики и характера внешнеполитической деятельности.

Руководствуясь соображениями зависимости благосостояния нации от величины создаваемого полезного продукта, интересов стратегической безопасности государств и народов от численности взрослого мужского населения, доходов казны от размера налогооблагаемых ресурсов и т. д., издавна отчетливо осознавалась и реализовывалась в форме различных учетных акций.

С учетом достижений экономической науки стал возможен расчет показателей, обобщенно характеризующих результаты воспроизводственного процесса на уровне общества: совокупного общественного продукта, национального дохода, валового национального продукта.

Всю перечисленную информацию в постоянно возрастающих объемах предоставляет обществу статистика, являющаяся необходимо принадлежностью государственного аппарата. Статистические данные, таким образом, способны сказать языком статистических показателей о многом в весьма яркой и убедительной форме.

Для статистического анализа данных в своей работе я использовала программу Excel (расчет формул и построение графиков).

Статистические ряды распределения, их значение и применение в статистике

В результате обработки и систематизации первичных данных статистического наблюдения получают группировки, называемые рядами распределения. В них известна численность единиц наблюдения в группах. Представленная в абсолютном и относительном выражении.

Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности.

Статистические ряды подразделяются на:

Атрибутивные - это ряды, построенные по атрибутивным признакам, в порядке возрастания или убывания наблюдаемых знаний.

То есть качественным признакам, не имеющим числового выражения и характеризующим свойство, качество изучаемого социально-экономического явления.

Атрибутивные ряды распределения характеризуют состав совокупности по тем или иным существенным признакам.

Взятые за несколько периодов, эти данные позволяют исследовать изменение структуры.

Число групп атрибутивного ряда распределения адекватно числу градаций. Разновидностей атрибутивного признака.

Пример атрибутивного ряда распределения приведен в таблице 1.

Таблица 1. Распределение студентов 1-го курса по успеваемости

Элементами данного ряда распределения являются градации атрибутивного признака «Успеваемость» («успевают» - «не успевают») и численность каждой группы в абсолютном (человек) и относительном (%) выражении.

Студентов, сдавших экзамен по дисциплине, было 46 человек. Их удельный вес составил 92%.

Вариационные - это ряды, построенные по количественному признаку.

Вариационные ряды распределения состоят из двух элементов: вариантов и частот:

Варианты - это числовые значения количественного признака в вариационном ряду распределения. Они могут быть положительными и отрицательными, абсолютными и относительными. Так, при группировке предприятий по результатам хозяйственной деятельности варианты положительные - это прибыль, а отрицательные числа - это убыток.

Частоты - это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяется числом элементов всей совокупности.

Частости - это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100%. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные.

Дискретный вариационный ряд распределения - это ряд, в котором группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

Пример дискретного вариационного ряда распределения приведен в таблице 2.

Таблица 2. Распределение студентов по экзаменационному баллу

В гр. 1 таблицы 2 представлены варианты дискретного вариационного ряда. В гр. 2 - частоты, а в гр. 3 - частости. В случае непрерывной вариации величина признака у единиц совокупности может принимать в определенным пределах любые значения. Отличающиеся друг от друга на сколь угодно малую величину.

Интервальный вариационный ряд распределения - это ряд, в котором группировочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения, в том числе и дробные.

Интервальный ряд распределения целесообразно строить, прежде всего, при непрерывной вариации признака, а также, если дискретная вариация проявляется в широких пределах, т.е. число вариантов дискретного признака достаточно велико.

Правила и принципы построения интервальных рядов распределения аналогичны правилам и принципам построения статистических группировок. В случае, если интервальный вариационный ряд распределения построен с равными интервалами, частоты позволяют судить о степени заполнения интервала единицами совокупности. При построении неравных интервалов нельзя получить информацию о степени заполнения каждого интервала. С целью проведения сравнительного анализа заполненности интервалов определяется показатель, характеризующий плотность распределения. Это отношение числа единиц совокупности к ширине интервала.

Пример интервального вариационного рада распределения приведен в таблице 3.

Таблица 3. Распределение строительных фирм региона по среднесписочной численности работающих*

* - Цифры условные

Представленный ряд распределения является интервальным, в основании образования групп которого лежит непрерывный признак.

Анализ рядов распределения можно для наглядности проводить на основе их графического изображения. Для этой цели строят полигон, гистограмму, огиву и кумуляту распределения.

Расчетная часть задания № 5

Имеются выборочные данные (выборка 5%-я механическая) о среднегодовой стоимости основных производственных фондов и выпуске продукции предприятий отрасли экономики за отчетный период.

Таблица 4. Исходные данные

Выпуск продукции, млн. руб.

По исходным данным:

1. Постройте статистический ряд распределения предприятий по среднегодовой стоимости основных производственных фондов, образовав четыре группы предприятий с равными интервалами, охарактеризовав их числом предприятий и удельным весом предприятий.

2. Рассчитайте обобщающие показатели ряда распределения:

а) среднегодовую стоимость основных производственных фондов, взвешивая значения признака по абсолютной численности предприятий и их удельному весу;

б) моду и медиану;

в) постройте графики ряда распределения и определите на них значение моды и медианы.

Решение:

1. Сначала определяем длину интервала по формуле:

е=(х max - x min)/k,

где k - число групп в группировке (из условия k=4),

х max и x min - максимальное и минимальное значения ряда распределения,

е=(60 - 20)/4=10 млн. руб.

Затем определим нижнюю и верхнюю интервальные границы для каждой группы:

Номер группы

нижняя граница

верхняя граница

Составим рабочую таблицу 5, куда сведем исходные данные:

Таблица 5. Рабочая таблица

Группы пред-ий по среднегодовой стоимости ОПФ,

№ предпри-ятия

Среднегодовая стоимость ОПФ, млн. руб.

Выпуск продукции,

Рассчитаем характеристику ряда распределения по удельному весу предприятий по формуле:

где d - удельный вес предприятия;

f i - кол-во предприятий в группе;

F i - общее кол-во предприятий.

Подставляем данные в формулы. Полученные результаты заносим в итоговую таблицу 6.

Все формулы и расчеты таблицы 6 введены в программе Excel и даны в Приложении 1.

Таблица 6. Распределения предприятий по среднегодовой стоимости основных производственных фондов

Данная группировка показывает, что у наибольшей части данных предприятий (33,3%) среднегодовая стоимость основных производственных фондов составляет от 40 до 50 млн. руб.

2. а) Рассчитаем среднегодовую стоимость основных производственных фондов по формуле средней арифметической взвешенной, взвешивая значения по абсолютной численности предприятий:

и по удельному весу:

Для расчета средней из интервального ряда необходимо выразить варианты одним (дискретным) числом, это средняя арифметическая простая из верхнего и нижнего значений интервала:

Подставляем данные в формулы. Полученные результаты занесем в таблицу 7.

Все формулы и расчеты таблицы 7 введены в программе Excel и даны в Приложении 1.

Таблица 7. Расчет среднегодовой стоимости ОПФ

Показатели средних равны, что доказывает правильность расчетов. Среднегодовая стоимость ОПФ равна 41,333 млн. руб.

б) Рассчитаем моду и медиану данного ряда.

Мода - это значение признака, наиболее часто встречающееся в изучаемой совокупности. Для интервальных вариационных рядов распределения мода рассчитывается по формуле:

где x Mo - нижняя граница модального интервала;

i Mo - величина модального интервала;

f Mo - частота модального интервала;

f Mo-1 - частота интервала, предшествующего модальному;

f Mo+1 - частота интервала, следующего за модальным.

Первоначально по наибольшей частоте признака определим модальный интервал. Наибольшее число предприятий - 10 - среднегодовая стоимость основных производственных фондов в интервале 40 - 50 млн. руб., который и является модальным.

Подставляем данные в формулу.

Из расчета видно, что модальным значением стоимости ОПФ предприятий является стоимость равная 44 млн. руб.

Медиана - это вариант, расположенный в середине упорядоченного вариационного ряда, делящий его на две равные части. Для интервальных вариационных рядов медиана рассчитывается по формуле:

где x Mе - нижняя граница медианного интервала;

i Mе - величина медианного интервала;

F - сумма частот ряда;

S Mе-1 - сумма накопленных частот ряда, предшествующих медианному интервалу;

f Mе - частота медианного интервала.

Определяем медианный интервал, в котором находится порядковый номер медианы. Для этого подсчитаем сумму частот накопленным итогом до числа, превышающего половину объема совокупности (30/2 = 15). Полученные данные заносим в расчетную таблицу 8.

Таблица 8. Расчет медианны

В графе «Сумма накопленных частот» значение 23 соответствует интервалу 40 - 50. Это и есть медианный интервал, в котором находится медиана.

Подставляем данные в формулу.

Из расчета видно, что у половины предприятий среднегодовая стоимость основных производственных фондов до 42 млн. руб., а у другой половина - выше этой суммы.

в) Построим графики данного ряда распределения по полученным данным:

Рис. 1.

Медиана

Рис. 2. Кумулята распределения предприятий по среднегодовой стоимости ОПФ

Цель: научиться составлять статистические распределения выборок, строить полигоны, гистограммы, строить эмпирические функции распределения.

Математическая статистика – это раздел прикладной математики, посвящённый методам сбора, группировки и анализа статистических сведений, полученных в результате наблюдений или экспериментов.

Генеральной совокупностью называют множество объектов, однородных относительно некоторого признака.

Выборочной совокупностью (выборкой) называется совокупность случайно отобранных объектов.

Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.

Число объектов совокупности называется её объёмом.

Выборка называется репрезентативной , если каждый объект выборки отобран случайно из генеральной совокупности, и если все объекты имеют одинаковую вероятность попасть в выборку.

Численное значение количественного признака называется вариантой .

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот .

Вариационным рядом называется ранжированный в порядке возрастания (или убывания) ряд вариант с соответствующими им частотами.

Вариационный ряд называется дискретным , если любые его варианты отличаются на постоянную величину, и – интервальным , если варианты могут отличаться одна от другой на сколь угодно малую величину.

Дискретный статистический ряд задается таблицей, в которой указываются варианты, частоты или относительные частоты их встречаемости. Графическое изображение дискретного статистического ряда называетсяполигоном частот (относительных частот). Это ломаная, в которой концы отрезков имеют координаты или , .

Пример . Закон распределения дискретного статистического рядя и полигон частот.

Интервальный статистический ряд для случайных непрерывных величин и для случайных дискретных величин при больших объемах выборок. Интервальный ряд представляет собой таблицу, в которой указаны частичные интервалы, плотности частот или плотности относительных частот. Графическое изображение интервального статистического ряда называетсягистограммой. Представляет собой ступенчатую фигуру из прямоугольников с основаниями, равными интервалам значений признака, и высотами, равными частотам интервалов.

Пример . Закон распределения интервального статистического ряда и гистограмма.

(55;60) (60;65) (65;70) (70;75) (75;80) (80;85) (85;90)

Алгоритм построения интервального ряда:

Пусть дана выборка с объёмом .

1) находим размах выборки ,

2) определяем число классов разбиения по формулам:

(формула Стерджесса для )

(формула Брукса для ),

3) находим величину классового интервала ,

4) границы частичных интервалов находим по формулам:

, , , .



5) подсчитываем частоты попадания вариант в каждый интервал.

Кумулятивная кривая (кумулята) – кривая накопленных частот. Для дискретного ряда кумулята представляет собой ломаную, соединяющую точки или , . Для интервального вариационного ряда ломаная начинается с точки, абсцисса которой равна началу первого интервала, а ордината накопленной частоте, равной 0. Другие точки соответствуют концам интервалов.

Эмпирической функцией распределения называется относительная частота того, что признак примет значение, меньшее заданного , то есть .

Для дискретного вариационного ряда эмпирическая функция представляет собой разрывную ступенчатую функцию, для интервального – совпадает с кумулятой.

Основные числовые характеристики вариационного ряда :

Среднее арифметическое вариационного ряда , где - варианты дискретного ряда или середины интервалов интервального, - соответствующие им частоты.

Основные свойства средней арифметической :

6) , где - общая средняя, - групповая средняя -той группы с объёмом , - число групп.

Дисперсия вариационного ряда .

Основные свойства дисперсии :

2) ,

3) ,

4) ,

5) , где - общая дисперсия, - групповая дисперсия, - средняя арифметическая групповых дисперсий, - межгрупповая дисперсия.

6) - дисперсия среднего значения.

Среднее квадратическое отклонение .

Коэффициент вариации .

Медиана вариационного ряда , где - начало медианного интервала, - его длина, - объём выборки, - сумма частот интервалов, предшествующих медианному, - частота медианного интервала. Для дискретного ряда медиана - значение признака, приходящееся на середину ранжированного ряда наблюдений.

Мода , где - начало модального интервала, - его длина, - частота модального интервала, и - частоты соответственно предшествующего и последующего за модальным интервалов. Для дискретного ряда мода - варианта, которой соответствует наибольшая частота.

Начальный момент -го порядка .

Центральный момент -го порядка .

Коэффициент асимметрии .

Эксцесс .

Контрольные вопросы:

1. Генеральная и выборочная совокупности, их объём.

2. Статистическое распределение выборки. Вариационный ряд.

3. Дискретный статистический ряд. Полигон частот.

4. Интервальный статистический ряд. Гистограмма.

5. Алгоритм построения интервального статистического ряда.

6. Эмпирическая функция распределения. Кумулятивная кривая.

7. Среднее арифметическое вариационного ряда и его свойства.

8. Дисперсия и её свойства. СКО.

Контрольные задания:

1.Как известно, почерк человека, в том числе наклон букв, тесно связан с его характером. Низкий наклон (30 – 40 град.) свидетельствует о вспыльчивости и возбудимости человека, излишней прямоте и торопливости в поступках; наклон 40 – 50 град. характеризует гармоническое развитие натуры; наклон 50 – 90 град. свидетельствует о самообладании, узком диапазоне увлечений.

Среди студентов института выборочно был исследован почерк 50 человек. Оказалось, что почерк у 30% присутствующих имеет низкий наклон, у 50% - наклон 40 – 50 и у 20% - наклон 50 – 90 град.

Найти распределение частот, относительных частот, построить полигон и гистограмму.

2. Дано распределение признака , полученное по наблюдениям. Необходимо:

4. Изучался рост (см) мужчин возраста 25 лет. По случайной выборке объема 35: 175, 167, 168, 169, 168, 170, 174, 173, 177, 172, 174, 167, 173, 172, 171, 171, 170, 167, 174, 177, 171, 172, 173, 169, 171, 173, 173, 168, 173, 172, 166, 164, 168, 172, 174, найти статистический интервальный ряд распределения и построить гистограмму частот.

Задания для домашней работы:

Дано распределение признака , полученное по наблюдениям. Необходимо:

1) построить (полигон) гистограмму, кумуляту и эмпирическую функцию распределения;

2) найти: среднюю арифметическую, моду и медиану, дисперсию, СКО и коэффициент вариации, начальные и центральные моменты -го порядка.

5-10 10-15 15-20 20-25 25-30 30-35 35-40

Тема №12 «Нахождение точечных и интервальных оценок параметров распределения»

Цель: научиться определять точечные и интервальные статистические оценки генеральных параметров нормального распределения по выборочным данным генеральной совокупности.

Краткие теоретические сведения:

Статистической оценкой (статистикой) неизвестного параметра q распределения генеральной совокупности называют функцию результатов наблюдений q* .

Статистическая оценка q* является случайной величиной.

Оценка, определяемая одним числом, зависящим от выборочных данных, называется точечной .

Требования, предъявляемые к точечным статистическим оценкам:

1) состоятельность (стремление по вероятности к оцениваемому параметру при ),

2) несмещённость (отсутствие систематических ошибок при любом объёме выборки (q*) = q ),

3) эффективность (среди всех возможных оценок эффективная оценка обладает наименьшей дисперсией).

Точечные оценки генеральных параметров нормально распределённой совокупности:

Интервальной оценкой называют оценку, которая определяется двумя числами – концами интервала.

Интервальные оценки позволяют установить точность и надёжность точечной оценки.

Точностью оценки называется отклонение по модулю q* от q.

Предельной ошибкой выборки называется максимально допустимое по модулю отклонение q* от q .

Надёжностью (доверительной вероятностью) оценки q* называют вероятность , с которой осуществляется неравенство |q - q*|< . Обычно = 0,95; 0,99; 0,999…

Вероятность того, что неизвестный параметр не попадёт в интервал |q - q*|< , равна - уровню значимости .

Доверительным называется интервал (q*- ;q*+ ), который покрывает неизвестный параметр с заданной надёжностью .

Интервальные оценки параметров нормального распределения:

1) Доверительный интервал для математического ожидания при известной дисперсии .

, где находят из таблицы функции Лапласа, учитывая .

2) Доверительный интервал для математического ожидания при неизвестной дисперсии .

Рис.:
, где находят из таблицы коэффициентов Стьюдента.

3) Доверительный интервал для дисперсии при известном .

< < , где , - находят при с числом степеней свободы .

4) Доверительный интервал для дисперсии при неизвестном .

, где - находят из таблицы распределения при 1- , - находят при с числом степеней свободы .

Пример 1 . Вычислить несмещённые оценки параметров генеральной совокупности по выборочным данным: 64 63 71 68 73 71 74 73 70 75 68 67 73.

,

,

.

Пример 2 . Найти доверительные интервалы для математического ожидания, дисперсии и стандартного отклонения при уровне значимости 0,05, если из генеральной совокупности сделана выборка, используемая в примере 1.

Решение. Используем данные из примера 1 для нахождения доверительного интервала для математического ожидания при неизвестной дисперсии:

,

.

Используем данные из примера 1 для нахождения доверительного интервала для дисперсии при неизвестном математическом ожидании:

,

где = ()= =4,4 и =

,

Контрольные вопросы:

1. Статистическая оценка неизвестного параметра теоретического распределения.

2. Точечная оценка.

3. Требования к точечным оценкам: несмещённость, состоятельность, эффективность.

4. Генеральная и выборочная средняя.

5. Генеральная и выборочная дисперсии.

6. Поправочный коэффициент. Исправленная выборочная дисперсия.

7. Генеральное среднеквадратическое отклонение и его точечная оценка.

8. Оценка дисперсии и СКО выборочной средней.

9. Интервальная оценка неизвестного параметра генеральной совокупности.

10. Доверительная вероятность и уровень значимости.

11. Доверительный интервал.

12. Правило нахождения доверительного интервала.

13. Доверительный интервал для математического ожидания при известной дисперсии .

14. Доверительный интервал для математического ожидания при неизвестной дисперсии .

15. Доверительный интервал для дисперсии при известном .

16. Доверительный интервал для дисперсии при неизвестном .

Контрольные задания:

1. При проверке успеваемости факультета были выборочно протестированы 50 обучаемых, распределившихся по результатам тестирования следующим образом ( - балл, - количество обучаемых с данным баллом):

Найти выборочную среднюю дистанции общения.

3. Найти разброс среднего балла в задании 1 тестирования 50 студентов.

4. Найти оценку разброса скорости чтения, распределение, которой представлено в таблице, предварительно определив относительную частоту средней скорости чтения.

5. Найти несмещённые оценки генеральной средней, дисперсии и среднеквадратического отклонения генеральной совокупности по выборке объема 12, описывающей продолжительность в секундах физической нагрузки до развития приступа стенокардии: 289, 208, 259, 243, 232, 210, 251, 246, 224, 239, 220, 211.

6. Имеется выборка объема – это значения систолического давления у мужчин в начальной стадии шока: 127, 124, 155, 129, 77, 147, 65, 109, 145, 141. Определить дисперсию и среднеквадратическое отклонение выборочной средней.

7. По схеме бесповторной выборки из 400 испытуемых в опытах Францена и Оффенлоха с применением вызванных потенциалов отобраны 100 человек и проведены замеры латентных периодов. Результаты испытаний приведены в таблице:

Задано среднее квадратическое отклонение . Найти:

а) вероятность того, что средний латентный период всех 400 человек отличается от среднего периода в выборке не более чем на 0,31 мс (по абсолютной величине),

б) границы, в которых с вероятностью заключено среднее значение латентного периода,

в) объём выборки, для которой доверительные границы с предельной ошибкой имели бы место с доверительной вероятностью .

8. Распределение ежедневных визитов Карлсона к Малышу в течение месяца показано в таблице:

Определить границы, в которых с вероятностью заключено среднее количество визитов.

9. Случайная величина имеет нормальное распределение с известным средним квадратическим отклонением =3. Найти доверительные интервалы для оценки неизвестного математического ожидания а по выборочным средним =24,5, если объём выборки и задана надёжность оценки .

10. Количественный признак генеральной совокупности распределён нормально. По выборке объёма найдены выборочная средняя =20,2 и исправленное среднее квадратическое отклонение . Оценить неизвестное математическое ожидание при помощи доверительного интервала с надёжностью 0,95.

11. Для 9 претендентов на должность руководителя была проведена оценка профессионального показателя , характеризующего способность руководить людьми. Считая показатель распределённым по нормальному закону со средним квадратическим отклонением усл. ед., определить с надёжностью доверительный интервал для истинного среднего квадратического отклонения показателя .

Задания для домашней работы:

1. Найти оценки генеральных средней, дисперсии и среднего квадратического отклонения, если совокупность задана таблицей распределения:

Оценить с надежностью 0,95 математическое ожидание нормально распределённого признака генеральной совокупности с помощью доверительного интервала.

4. Найти доверительные интервалы для математического ожидания, дисперсии и среднего квадратического отклонения при доверительной вероятности 0,95, если из генеральной совокупности сделана выборка:

67 70 69 68 74 72 66 66 74 69 72 78 67

Тема №13 «Проверка статистических гипотез о равенстве дисперсий и математических ожиданий»

Цель: научиться проверять статистические гипотезы о равенстве дисперсий и математических ожиданий нормальных генеральных совокупностей.

Краткие теоретические сведения:

Статистической называют гипотезу о виде неизвестного распределения, или о параметрах известных распределений.

Нулевой (основной) называют выдвинутую гипотезу .

Конкурирующей (альтернативной) называют гипотезу , которая противоречит нулевой.

Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза.

Ошибка второго рода состоит в том, что будет принята неправильная гипотеза.

Вероятность совершить ошибку второго рода – уровень значимости .

Статистическим критерием называют случайную величину , которая служит для проверки нулевой гипотезы.

Наблюдаемым значением называют значение критерия, вычисленное по выборкам.

Критической областью называют совокупность значений критерия, при которой нулевую гипотезу отвергают.

Область принятия гипотезы – совокупность значений критерия, при котором гипотезу принимают.

Если принадлежит критической области – гипотезу отвергают, если принадлежит области принятия гипотезы – гипотезу принимают.

Критическими точками называют точки, отделяющие критическую область от области принятия гипотезы.

Критические точки ищут, исходя из требования, что при условии справедливости нулевой гипотезы, вероятность того, что критерий попадет в критическую область, была равна принятому уровню значимости.

Для каждого критерия имеются соответствующие таблицы, по которым находят критическую точку, удовлетворяющую этому требованию.

Когда найдена, вычисляют по данным выборок и, если > (правосторонняя критическая область), < (левосторонняя), < < , < (двусторонняя), то отвергается.

Сравнение двух дисперсий нормальных генеральных совокупностей:

Пусть и распространены нормально. По независимым выборкам с объемами, соответственно равными и , извлеченным из этих совокупностей, найдены исправленные выборочные дисперсии и . Требуется по исправленным дисперсиям при заданном уровне значимости проверить нулевую гипотезу .

1) выдвигаем конкурирующую гипотезу (),

2) находим ,

3) по таблице критических точек Фишера –Снедекора находим (), где , и - объём выборки, которой соответствует , - ,

4) если , то принимаем нулевую гипотезу, в противном случае – альтернативную.

При систематизации данных выборочных обследований используются статистические дискретные и интервальные ряды распределения.

1. Статистическое дискретное распределение. Полигон.
Пусть из генеральной совокупности извлечена выборка, причем х 1 наблюдалось n 1 раз, х 2 – n 2 раз, х k – n k раз и ∑n i =n - объем выборки. Наблюдаемые значения х 1 называют вариантами, а последовательность вариант, записанных в возрастающем порядке – вариационным рядом. Число наблюдений варианты называют частотой, а ее отношение к объему выборки - относительной частотой n i /n=w i

ОПРЕДЕЛЕНИЕ. Статистическим (эмпирическим) законом распределения выборки, или просто статистическим распределением выборки называют последовательность вариант х i и соответствующих им частот n i или относительных частот w i .

Статистическое распределение выборки удобно представлять в форме таблицы распределения частот, называемой статистическим дискретным рядом распределения:

(сумма всех относительных частот равна единице ∑w i =1)

Пример 1. При измерениях в однородных группах обследуемых получены следующие выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72, 74 (частота пульса). Составить по этим результатам статистический ряд распределения частот и относительных частот.

Решение. 1) Статистический ряд распределения частот:

x i 70 71 72 73 74
n i 2 4 8 2 4

2) Объем выборки: n=2+4+8+2+4=20. Найдем относительные частоты, для чего разделим частоты на объем выборки n i /n=w i: w i =2/20=0.1; w 2 =4/20=0.2; w 3 =0.4; w 4 =4/20=0.1; w 5 =2/20=0.2. Напишем распределение относительных частот:

x i 70 71 72 73 74
w i 0.1 0.2 0.4 0.1 0.2

Контроль: 0,1+0,2+0,4+0,1+0,2=1.

Полигоном частот называют ломаную, отрезки, которой соединяют точки (х 1 ,n 1),(х 2 ,n 2),...,(х k ,n k). Для построения полигона частот на оси абсцисс откладывают варианты х 2 , а на оси ординат – соответствующие им частоты n i . Точки (х i ,n i) соединяют отрезками и получают полигон частот.

Полигоном относительных частот называют ломаную, отрезки, которой соединяют точки (х 1 ,w 1),(х 2 ,w 2),...,(х k ,w k). Для построения полигона относительных частот на оси абсцисс откладывают варианты х i , а на оси ординат соответствующие им частоты w i . Точки (х i ,w i) соединяют отрезками и получают полигон относительных частот.

Пример 2. Постройте полигон частот и относительных частот по данным примера 1.
Решение: Используя дискретный статистический ряд распределения, составленный в примере 1 построим полигон частот и полигон относительных частот:

2. Статистический интервальный ряд распределения. Гистограмма. Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются в том случае, когда отличных друг от друга вариант в выборке не слишком много, или тогда, когда дискретность по тем или иным причинам существенна для исследователя. Если же интересующий нас признак генеральной совокупности Х распределен непрерывно или его дискретность нецелесообразно (или невозможно) учитывать, то варианты группируются в интервалы.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал).

Замечание. Часто h i -h i-1 =h при всех i, т.е. группировку осуществляют с равным шагом h. В этой ситуации можно руководствоваться следующими эмперическими рекомендациями по выборке а, k и h i:

1. R размах =X max -X min
2. h=R/k; k-число групп
3. k≥1+3.321lgn (формула Стерджеса)
4. a=x min , b=x max
5. h=a+ih, i=0,1...k

Полученную группировку удобно представить в форме частотной таблицы, которая носит название статистический интервальный ряд распределения:

Аналогическую таблицу можно образовать, заменяя частоты ni относительными частотами:

Пример 3. Из очень большой партии деталей извлечена случайная выборка объема 50 интересующий нас признак Х-размеры деталей, измеренные с точностью до 1см, представлен следующим вариоционным рядом: 22, 47, 26, 26, 30, 28, 28, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 40, 40, 40, 40, 40, 41, 41, 43, 44, 44, 45, 45, 47, 50. Найти статистический интервальный ряд распределения.

Решение. Определим характеристики группировки с помощью замечания.
k≥1+3.321lg50=1+3.32lg(5 10)=1+3.32(lg5+lg10)=6.6
Имеем, a=22, k=7, h=(50-22)/7=4, h i =22+4i, i=0,1,…,7.

Интервалы группировки 22-26 26-30 30-34 34-38 38-42 42-46 46-50
Частоты n i 1 4 10 18 9 5 3
Отн.частоты w i 0.02 0.08 0.2 0.36 0.18 0.1 0.06

Десятичные логарифмы от 1 до 10

n 1 2 3 4 5 6 7 8 9 10
lnn 0 0.3 0.48 0.6 0.7 0.78 0.85 0.9 0.95 1

Наиболее информативной графической формой частот является специальный график, называемы гистограммой частот.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению n i /h (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии n i /h. Площадь i-го частичного прямоугольника равна h n i /h=n i - сумме частот вариант i-го интервала; следовательно, площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению w i /h (плотность относительной частоты).

Для построения гистограммы относительных частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии w i /h. Площадь i-го частичного прямоугольника равна h w i /h=w i - относительной частоте вариант, попавших в i-й интервал. Следовательно, площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

Пример 4. Постройте гистограмму частот и относительных частот по данным примера 3.

Выборочная медиана – это середина вариационного ряда, значение, расположенное на одинаковом расстоянии от левой и правой границы выборки.

Выборочная мода – это наиболее вероятное, т.е. чаще всего встречающееся, значение в выборке.

Представляются в виде рядов распределения и оформляются в виде .

Ряд распределния является одним из видов группировок.

Ряд распределения — представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку.

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

  • Атрибутивными — называют ряды распределения, построенные по качественными признакам.
  • Ряды распределения, построенные в порядке возрастания или убывания значений количественного признака называются вариационными .
Вариационный ряд распределения состоит из двух столбцов:

В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются . Дискретная варианта — выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд.
Во втором столбце содержится количество конкретных вариант , выраженное через частоты или частости:

Частоты — это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака, которые обозначают . Сумма всех частот равна должна быть равна численности единиц всей совокупности.

Частости () — это частоты выраженные в процентах к итогу. Сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

Графическое изображение рядов распределения

Наглядно ряды распределения представляются при помощи графических изображений.

Ряды распределения изображаются в виде:
  • Полигона
  • Гистограммы
  • Кумуляты
  • Огивы

Полигон

При построении полигона на горизонтальной оси (ось абсцисс) откладывают значения варьирующего признака, а на вертикальной оси (ось ординат) — частоты или частости.

Полигон на рис. 6.1 построен по данным микропереписи населения России в 1994 г.

6.1. Распределение домохозяйств по размеру

Условие : Приводятся данные о распределении 25 работников одного из предприятий по тарифным разрядам:
4; 2; 4; 6; 5; 6; 4; 1; 3; 1; 2; 5; 2; 6; 3; 1; 2; 3; 4; 5; 4; 6; 2; 3; 4
Задача : Построить дискретный вариационный ряд и изобразить его графически в виде полигона распределения.
Решение :
В данном примере вариантами является тарифный разряд работника. Для определения частот необходимо рассчитать число работников, имеющих соответствующий тарифный разряд.

Полигон используется для дискретных вариационных рядов.

Для построения полигона распределения (рис 1) по оси абсцисс (X) откладываем количественные значения варьирующего признака — варианты, а по оси ординат — частоты или частости.

Если значения признака выражены в виде интервалов, то такой ряд называется интервальным.
Интервальные ряды распределения изображают графически в виде гистограммы, кумуляты или огивы.

Статистическая таблица

Условие : Приведены данные о размерах вкладов 20 физических лиц в одном банке (тыс.руб) 60; 25; 12; 10; 68; 35; 2; 17; 51; 9; 3; 130; 24; 85; 100; 152; 6; 18; 7; 42.
Задача : Построить интервальный вариационный ряд с равными интервалами.
Решение :

  1. Исходная совокупность состоит из 20 единиц (N = 20).
  2. По формуле Стерджесса определим необходимое количество используемых групп: n=1+3,322*lg20=5
  3. Вычислим величину равного интервала: i=(152 — 2) /5 = 30 тыс.руб
  4. Расчленим исходную совокупность на 5 групп с величиной интервала в 30 тыс.руб.
  5. Результаты группировки представим в таблице:

При такой записи непрерывного признака, когда одна и та же величина встречается дважды (как верхняя граница одного интервала и нижняя граница другого интервала), то эта величина относится к той группе, где эта величина выступает в роли верхней границы.

Гистограмма

Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).

На рис. 6.2. изображена гистограмма распределения населения России в 1997 г. по возрастным группам.

Рис. 6.2. Распределение населения России по возрастным группам

Условие : Приводится распределение 30 работников фирмы по размеру месячной заработной платы

Задача : Изобразить интервальный вариационный ряд графически в виде гистограммы и кумуляты.
Решение :

  1. Неизвестная граница открытого (первого) интервала определяется по величине второго интервала: 7000 — 5000 = 2000 руб. С той же величиной находим нижнюю границу первого интервала: 5000 — 2000 = 3000 руб.
  2. Для построения гистограммы в прямоугольной системе координат по оси абсцисс откладываем отрезки, величины которых соответствуют интервалам варицонного ряда.
    Эти отрезки служат нижним основанием, а соответствующая частота (частость) — высотой образуемых прямоугольников.
  3. Построим гистограмму:

Для построения кумуляты необходимо рассчитать накопленные частоты (частости). Они определяются путем последовательного суммирования частот (частостей) предшествующих интервалов и обозначаются S. Накопленные частоты показывают, сколько единиц совокупности имеют значение признака не больше, чем рассматриваемое.

Кумулята

Распределение признака в вариационном ряду по накопленным частотам (частостям) изображается с помощью кумуляты.

Кумулята или кумулятивная кривая в отличие от полигона строится по накопленным частотам или частостям. При этом на оси абсцисс помещают значения признака, а на оси ординат — накопленные частоты или частости (рис. 6.3).

Рис. 6.3. Кумулята распределения домохозяйств по размеру

4. Рассчитаем накопленные частоты:
Наколенная частота первого интервала рассчитывается следующим образом: 0 + 4 = 4, для второго: 4 + 12 = 16; для третьего: 4 + 12 + 8 = 24 и т.д.

При построении кумуляты накопленная частота (частость) соответствующего интервала присваивается его верхней границе:

Огива

Огива строится аналогично кумуляте с той лишь разницей, что накопленные частоты помещают на оси абсцисс, а значения признака — на оси ординат.

Разновидностью кумуляты является кривая концентрации или график Лоренца. Для построения кривой концентрации на обе оси прямоугольной системы координат наносится масштабная шкала в процентах от 0 до 100. При этом на оси абсцисс указывают накопленные частости, а на оси ординат — накопленные значения доли (в процентах) по объему признака.

Равномерному распределению признака соответствует на графике диагональ квадрата (рис. 6.4). При неравномерном распределении график представляет собой вогнутую кривую в зависимости от уровня концентрации признака.

6.4. Кривая концентрации

Предмет математической статистики. Генеральная и выборочная совокупность.

— Математическая статистика – раздел математики, который изучает способы отбора, группировки, систематизации и анализа статистических данных, для получения научно обоснованных выводов.

— Статистические данные – числовые значения рассматриваемого признака изучаемых объектов, полученные как результат случайного эксперимента.

Математическая статистика тесно связана с теорией вероятностей, но в отличие от теории вероятностей, математическая модель эксперимента неизвестна. В математической статистике по статистическим данным необходимо установить неизвестное распределение вероятностей или объективно оценить параметры распределения.

Методы математической статистики позволяют строить оптимальные математические модели массовых, повторяющихся явлений. Связующим звеном между теорией вероятностей и математической статистикой являются предельные теоремы теории вероятностей.

В настоящее время статистические методы используются практически во всех отраслях народного хозяйства.

— Генеральная совокупность – статистические данные всех изучаемых объектов (иногда – сами объекты). Часто генеральную совокупность рассматривают как СВ Х.

— Выборка (выборочная совокупность) – статистические данные объектов, выбранных случайно из генеральной совокупности.

— Объём выборки n (объём генеральной совокупности N ) – количество объектов, выбранных для изучения из генеральной совокупности (количество объектов в генеральной совокупности).

Примеры .

а) Статистическими данными могут быть: рост студентов; количество глаголов (или других частей речи) в отрывке текста определённой длины; средний балл аттестата; уровень интеллекта; число ошибок, допущенных диспетчером и т. п.

б) Генеральной совокупностью может быть: рост всех людей, разряды всех рабочих завода, частота употребления определённой части речи во всех произведениях изучаемого автора, средний балл аттестата всех выпускников и т. п.



в)Выборкой может быть: – рост 20 студентов, количество глаголов в выбранных произвольно 50 однородных отрывках текста длиной 500 словоупотреблений, средний балл аттестата 100 выпускников, выбранных случайно из школ города и т.п.

Выборка называется репрезентативной, если она верно отражает свойство генеральной совокупности. Репрезентативность выборки достигается случайностью отбора, когда все объекты генеральной совокупности имеют одинаковую вероятность быть отобранными.

Для того чтобы выборка была репрезентативной применяют различные способы отбора объектов изучения.

Виды отбора : простой, механический, серийный, типический.

Простой . Произвольно отбираются элементы из всей генеральной совокупности.

Механический отбор . Выбирают каждый 10 (25, 30 и т.п.) объект из генеральной совокупности.

Серийный . Проводится исследование в каждой серии (например, из текста выбирают 10 отрывков по 500 словоупотреблений- 10 серий).

Типический . Генеральную совокупность по определённому признаку разделяют на типические группы. Количество серий, извлекаемых из каждой такой группы, определяется удельным весом этой группы в генеральной совокупности.

Статистическое распределение выборки и его графическое изображение.

Пусть изучается СВ Х (генеральная совокупность) относительно некоторого признака. Проводится ряд независимых испытаний. В результате опытов СВ Х принимает некоторые значения. Совокупность полученных значений представляет собой выборку, а сами значения являются статистическими данными.

Первоначально проводят ранжирование выборки - расположение статистических данных выборки по неубыванию. Получаем вариационный ряд.

Вариационный ряд - проранжированная выборка.

Дискретный статистический ряд

Если генеральная совокупность является дискретной СВ, строится дискретный статистический ряд (статистическое распределение).

Пусть значение появилось в выборке раз,

Разa , …, - раз.

I-тая варианта выборки; - частота i-той варианты Частота показывает, сколько раз данная варианта появилась в выборке.

- относительная частота i-той варианты

(показывает какую часть выборки составляет ).

Статистическое распределение – это соответствие между вариантами выборки и их частотами или относительными частотами.

Для ДСВ статистическое распределение можно представить в виде таблицы – статистического ряда частот или статистического ряда относительных частот.

Статистический ряд частот Статистический ряд

относительных частот

........
........
........
........

Для наглядности представления статистического распределения выборки строят «графики» статистического распределения: полигон и гистограмму.

Полигон частот (относительных частот) – графическое изображение дискретного статистического ряда - ломаная линия, последовательно соединяющая точки [ для полигона относительных частот].

Пример. Исследователя интересуют знания абитуриентов по математике. Выбирают 10 абитуриентов и записывают их школьные оценки по этому предмету. Получена следующая выборка: 5;4;4;3;2;5;4;3;4;5.

а) Представить выборку в виде вариационного ряда;

б) построить статистический ряд частот и относительных частот;

в) изобразить полигон относительных частот для полученного ряда.

а) Проведем ранжирование выборки, т.е. расположим члены выборки по неубыванию. Получаем вариационный ряд: 2; 3; 3; 4; 4; 4; 4; 5; 5;5.

б) Построим статистический ряд частот (соответствие между вариантами выборки и их частотами) и статистический ряд относительных частот (соответствие между вариантами выборки и их относительными частотами)

0,1 0,2 0,4 0,3

Статистический ряд частот статистический ряд отн. частот

1+2+4+3=10=n 0,1+0,2+0,4+0,3=1.

Полигон относительных частот.


  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то