Реферат: Статистическое определение вероятности. Классическое, статистическое и геометрическое определения вероятности

Классическое определение вероятности предполагает, что все эле­ментарные исходы равновозможны . О равновозможности исходов опы­та заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим . Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

Относительной частотой события , или частотой , называется от­ношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события через , тогда по определению

(1.4.1)
где - число опытов, в которых появилось событие и - число всех произведенных опытов.

Частота события обладает следующими свойствами.

Наблюдения позволили установить, что относительная частота об­ладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного со­бытия.

Вероятностью события называется число, около которого группи­руются значения,частоты данного события в различных сериях большо­го числа испытаний.

Это определение вероятности называется статистическим .

В случае статистического определения вероятность обладает сле­дующими свойствами:
1) вероятность достоверного события равна еди­нице;
2) вероятность невозможного события равна нулю;
3) вероятность случайного события заключена между нулем и единицей;
4) вероятность суммы двух несовместных событий равна сумме вероятностей этих со­бытий.

Пример 1. Из 500 взятых наудачу деталей оказалось 8 бракован­ных. Найти частоту бракованных деталей.

Решение. Так как в данном случае = 8, = 500, то в соответствии с формулой (1.4.1) находим

Пример 2 . Игральный кубик подброшен 60 раз, при этом шестерка появилась 10 раз. Какова частота появления шестерки ?

Решение. Из условия задачи следует, что = 60, = 10, поэтому

Пример 3. Среди 1000 новорожденных оказалось 515 мальчиков.Чему равна частота рождения мальчиков?
Решение. Поскольку в данном случае , , то .

Пример 4. В результате 20 выстрелов по мишени получено 15 попаданий. Какова частота попаданий?

Решение. Так как = 20, = 15, то

Пример 5. При стрельбе по мишени частота попаданий = 0,75. Найти число попаданий при 40 выстрелах.

Решение. Из формулы (1.4.1) следует, что . Так как = 0,75, = 40, то . Таким образом, было получено 30 попаданий.

Пример 6. www.. Из высе­янных семян взошло 970. Сколько семян было высеяно?

Решение. Из формулы (1.4.1) следует, что . Поскольку , , то . Итак, было высеяно 1000 семян.

Пример 7. На отрезке натурального ряда от 1 до 20 найти частоту простых чисел.

Решение. На указанном отрезке натурального ряда чисел находятся следующие простые числа: 2, 3, 5, 7, 11, 13, 17, 19; всего их 8. Так как = 20, = 8, то искомая частота

.

Пример 8. Проведены три серии многократных подбрасываний симметричной монеты, подсчитаны числа появлений герба: 1) = 4040, =2048, 2) = 12000, = 6019; 3) = 24000, = 12012. Найти частоту появления герба в каждой серии испытаний.

Решение . В соответствии с формулой (1.4.1) находим:

Замечание. Эти примеры свидетельствуют о том, что при многократ­ных испытаниях частота события незначительно отличается от его вероятности. Вероятность появления герба при подбрасывании монеты р = 1/2 = 0,5 , так как в этом случае n = 2, m = 1.

Пример 9. Среди 300 деталей, изготовленных на автоматическом станке, оказалось 15, не отвечающих стандарту. Найти частоту появле­ния нестандартных деталей.

Решение. В данном случае n = 300, m = 15, поэтому

Пример 10. Контролер, проверяя качество 400 изделий установил, что 20 из них относятся ко второму сорту, а остальные - к первому. Най­ти частоту изделий первого сорта, частоту изделий второго сорта.

Решение. Прежде всего, найдем число изделий первого сорта: 400 - 20 = 380. Поскольку n = 400, = 380, то частота изделий перво­го сорта

Аналогично находим частоту изделий второго сорта:

Задачи

  1. Отдел технического контроля обнаружил 10 нестандартных изде­лий в партии из 1000 изделий. Найдите частоту изготовления бракован­ных изделий.
  2. Для выяснения качества семян было отобрано и высеяно в лабо­раторных условиях 100 штук. 95 семян дали нормальный всход. Какова частота нормального всхода семян?
  3. Найдите частоту появления простых чисел в следующих отрезках натурального ряда: а) от 21 до 40; б) от 41 до 50; в) от 51 до 70.
  4. Найдите частоту появления цифры при 100 подбрасываниях сим­метричной монеты. (Опыт проводите самостоятельно).
  5. Найдите частоту появления шестерки при 90 подбрасываниях иг­рального кубика.
  6. Путем опроса всех студентов Вашего курса определите частоту дней рождения, попадающих на каждый месяц года.
  7. Найдите частоту пятибуквенных слов в любом газетном тексте.

Ответы

  1. 0,01. 2. 0,95; 0,05. 3. а) 0,2; б) 0,3; в) 0,2.

Вопросы

  1. Что такое частота события?
  2. Чему равна частота достоверного события?
  3. Чему равна частота невозможного события?
  4. В каких пределах заключена частота случайного события?
  5. Чему равна частота суммы двух несовместных событий?
  6. Какое определение вероятности называют статистическим?
  7. Какими свойствами обладает статистическая вероятность?

Метки . Смотреть .

Случайность наступления событий связана с невозможностью предсказать заранее исход того или иного испытания. Однако, если рассматривать, например, испытание: многократное бросание монеты, ω 1 , ω 2 , … , ω n , то получается, что приблизительно в половине исходов (n / 2) обнаруживается определённая закономерность, которая соответствует понятию вероятности.

Под вероятностью события А понимается некоторая числовая характеристика возможности наступления события А . Обозначим эту числовую характеристику р (А ). Существуют несколько подходов к определению вероятности. Основными из них являются статистический, классический и геометрический.

Пусть произведено n испытаний и при этом некоторое событие А наступило n A раз. Число n A называется абсолютной частотой (или просто частотой) события А , а отношение называется относительной частотой наступления события А. Относительная частота любого события характеризуется следующими свойствами:

Основанием для применения методов теории вероятностей к изучению реальных процессов является объективное существование случайных событий, обладающих свойством устойчивости частот. Многочисленные испытания изучаемого события А показывают, что при больших n относительная частота (А ) остаётся примерно постоянной.

Статистическое определение вероятности заключается в том, что за вероятность события А принимается постоянная величина р(А), вокруг которой колеблются значения относительных частот (А ) при неограниченном возрастании числа испытаний n .

Замечание 1 . Отметим, что пределы изменения вероятности случайного события от нуля до единицы выбраны Б. Паскалем для удобства ее вычисления и применения. В переписке с П. Ферма Паскаль указывал, что в качестве указанного промежутка можно было выбрать любой промежуток, например от нуля до ста и другие промежутки. В приведенных ниже задачах в данном пособии вероятности иногда указываются в процентах, т.е. от нуля до ста. В этом случае приведенные в задачах проценты необходимо переводить в доли, т.е. делить на 100.

Пример 1. Проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Величина (А ) в каждой из серий равна 0,501; 0,485; 0,509; 0,536; 0,485; 0,488; 0,500; 0,497; 0,494; 0,484. Эти частоты группируются около р (А ) = 0,5.

Этот пример подтверждает, что относительная частота (А ) примерно равна р (А ), т.е.

В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

Событие называется случайным , если в результате опыта оно может произойти или не произойти.

Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Противоположными называются два единственно возможных события, образующих полную группу.

Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.

Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость более часто будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n-достаточно большое число, скажем n=1000 или n=5000), подсчитать число выпадений трех очков n 3 и считать вероятность исхода, заключающегося в выпадении трех очков, равной n 3 /n – относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов – единицы, двойки, четверки и т.д. Теоретически такой образ действий можно оправдать, если ввести статистическое определение вероятности.

Вероятность P(w i) определяется как предел относительной частоты появления исхода w i в процессе неограниченного увеличения числа случайных экспериментов n, то есть

где m n (w i) – число случайных экспериментов (из общего числа n произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исхода w i .

Так как здесь не приводится никаких доказательств, мы можем только надеяться, что предел в последней формуле существует, обосновывая надежду жизненным опытом и интуицией.

В практике очень часто возникают задачи, в которых какой-либо другой способ определения вероятности события, кроме статистического определения, найти невозможно или крайне трудно.

Непрерывное вероятностное пространство.

Как уже говорилось ранее, множество элементарных исходов может быть более, чем счетным (то есть несчетным). Так несчётное множество исходов имеет эксперимент, состоящий в случайном бросании точки на отрезок . Можно себе представить, что эксперимент, заключающийся в измерении температуры в заданный момент в заданной точке тоже имеет несчётное число исходов (действительно, температура может принять любое значение из некоторого промежутка, хотя в действительности мы можем измерять её лишь с определённой точностью, и практическая реализация такого эксперимента даст конечное число исходов). В случае эксперимента с несч ётным множеством W элементарных исходов нельзя считать любое подмножество множества W событием. Следует заметить, что подмножества W, не являющиеся событиями, являются математическими абстракциями и не встречаются в практических задачах. Поэтому в нашем курсе данный параграф является необязательным.

Чтобы ввести определение случайного события, рассмотрим систему (конечную или счетную) подмножеств пространства элементарных исходов W.

В случае выполнения двух условий:

1) из принадлежности А этой системе следует принадлежность этой системе;

2) из принадлежности и этой системе следует принадлежность A i A j этой системе

такая система подмножеств называется алгеброй.

Пусть W - некоторое пространство элементарных исходов. Убедитесь в том, что две системы подмножеств:

1) W, Æ; 2) W, А, , Æ (здесь А- подмножествоW) являются алгебрами.

Пусть A 1 и A 2 принадлежат некоторой алгебре. Докажите, что A 1 \ A 2 и принадлежат этой алгебре.

Назовём s-алгеброй систему Á подмножеств множества W, удовлетворяющую условию 1) и условию 2)¢:

2)¢ если подмножества А 1 , А 2 ,¼, А n , ¼принадлежат Á, то их счётное объединение (по аналогии с суммированием это счётное объединение кратко записывается формулой ) тоже принадлежит Á.

Подмножество А множества элементарных исходов W является событием, если оно принадлежит некоторой s-алгебре.

Можно доказать, что если выбрать любую счётную систему событий, принадлежащих некоторой s-алгебре и проводить с этими событиями любые принятые в теории множеств операции (объединение, пересечение, взятие разности и дополнения), то результатом будет множество или событие, принадлежащее той же s-алгебре.

Сформулируем аксиому, называемую аксиомой А.Н. Колмогорова.

Каждому событию соответствует неотрицательное и не превосходящее единицы число P(А), называемое вероятностью события А, причем функция P(А) обладает следующими свойствами:

2) если события A 1 , A 2 ,..., A n , ¼ несовместны, то

Если задано пространство элементарных исходов W, алгебра событий и определенная на ней функция Р, удовлетворяющая условиям приведенной аксиомы, то говорят, что задано вероятностное пространство.

Это определение вероятностного пространства можно перенести на случай конечного пространства элементарных исходов W. Тогда в качестве алгебры можно взять систему всех подмножеств множества W.

Геометрическая вероятность

В одном специальном случае дадим правило расчёта вероятности события для случайного эксперимента с несчетным множеством исходов.

Если между множеством W элементарных исходов случайного эксперимента и множеством точек некоторой плоской фигуры S (сигма большая) можно установить взаимно-однозначное соответствие, а также можно установить взаимно-однозначное соответствие между множеством элементарных исходов, благоприятствующих событию А, и множеством точек плоской фигуры s (сигма малая), являющейся частью фигуры S, то

где s – площадь фигуры s, S - площадь фигуры S. Здесь, естественно, подразумевается, что фигуры S и s имеют площади. В частности, например, фигура s может представлять собой отрезок прямой линии, с площадью, равной нулю.

Заметим, что в этом определении вместо плоской фигуры S можно рассматривать промежуток S, а вместо её части s – промежуток s, целиком принадлежащий промежутку s, и вероятность представлять как отношение длин соответствующих промежутков.

Пример. Два человека обедают в столовой, которая открыта с 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

Пусть x - время прихода первого в столовую, а y - время прихода второго .

Можно установить взаимно-однозначное соответствие между всеми парами чисел (x;y) (или множеством исходов) и множеством точек квадрата со стороной, равной 1, на координатной плоскости, где начало координат соответствует числу 12 по оси X и по оси Y, как изображено на рисунке 6. Здесь, например, точка А соответствует исходу, заключающемуся в том, что первый пришел в 12.30, а второй - в 13.00. В этом случае, очевидно, встреча не состоялась.

Если первый пришел не позже второго (y ³ x), то встреча произойдет при условии 0 £ y - x £ 1/6 (10 минут– это 1/6 часа).

Если второй пришел не позже первого (x³y), то встреча произойдет при условии 0 £ x – y £ 1/6..

Между множеством исходов, благоприятствующих встрече, и множеством точек области s, изображенной на рисунке7 в заштрихованном виде, можно установить взаимно-однозначное соответствие.

Искомая вероятность p равна отношению площади области s к площади всего квадрата. Площадь квадрата равна единице, а площадь области s можно определить как разность единицы и суммарной площади двух треугольников, изображенных на рисунке7. Отсюда следует:

Задачи с решениями.

На шахматную доску с шириной клетки 5см брошена монета радиуса 1,5см. Найти вероятность того, что монета не попадёт ни на одну границу клетки.

Задача II.

Через реку шириной 100 м перекинут мост. В некоторый момент, когда на мосту находятся два человека, мост рушится, и оба они падают в реку. Первый умеет плавать и спасётся. Второй плавать не умеет, и спасётся, только если упадёт не далее 10-ти метров от берега или не далее, чем в 10-ти метрах от первого. Какова вероятность, что второй человек спасётся?

Задача III.

Противотанковые мины поставлены на прямой через 15 м. Танк шириной в 2 м. едет перпендикулярно этой прямой. Какова вероятность, что он не подорвется на мине?

Задача VI.

На промежутке (0; 2) случайным образом выбираются два числа. Найти вероятность того, что квадрат большего числа меньше, чем меньшее число

На отрезок бросаются наудачу две точки. Они разбивают отрезок на три части. Какова вероятность того, что из полученных отрезков можно составить треугольник?

Задача VI.

На отрезок бросают наудачу три точки, одну за другой. Какова вероятность того, что третья по счёту точка упадёт между двумя первыми?

Задача I. Положение монеты на шахматной доске полностью определяется положением её геометрического центра. Всё множество исходов можно изобразить в виде квадрата S со стороной 5. Всё множество благоприятных исходов тогда изображается в виде квадрата s, лежащего внутри квадрата S, как это изображено на рисунке 1.

Искомая вероятность тогда равна отношению площади малого квадрата к площади большого квадрата, то есть, 4/25

Задача II. Обозначим через х расстояние от левого берега реки до точки падения первого человека, а через у – расстояние от левого берега до точки падения второго человека. Очевидно, что и х, и у принадлежат промежутку (0;100). Таким образом, можно заключить, что всё множество исходов можно отобразить на квадрат, левый нижний угол которого лежит в начале координат, а правый верхний – в точке с координатами (100;100). Две полосы: 0x, то есть второй упал ближе к правому берегу, чем первый, то для того, чтобы он был спасён, должно выполняться условие у<х+10. Если ух–10. Из сказанного следует, что все благополучные для второго человека исходы отображаются в заштрихованную область на рисунке 2. Площадь этой области легче всего подсчитать, вычитая из площади всего квадрата площади двух незаштрихованных треугольников, что даёт в результате 10000–6400=3600. Искомая вероятность равна 0,36.

Задача III.

По условию задачи положение танка на промежутке между двумя соседними минами полностью определяется положением прямой линии, равноотстоящей от бортов танка. Эта линия перпендикулярна линии, по которой установлены мины, и танк подрывается на мине, если эта линия расположена ближе, чем в 1-м метре от края промежутка. Таким образом, всё множество исходов отображается в промежуток длиной 15, а множество благоприятных исходов отображается в промежуток длиной 13, как показано на рисунке 3, Искомая вероятность равна 13/15.

Задача IV.

Обозначим одно из чисел х, а другое – у. Всё множество возможных исходов отображается в квадрат ОBCD , две стороны которого совпадают с осями координат и имеют длину, равную 2, как показано на рисунке 4. Допустим, что у–меньшее число. Тогда множество исходов отображается в треугольник ОCD с площадью, равной 2. Выбранные числа должны удовлетворять двум неравенствам:

у<х, у>х 2

Множество чисел, удовлетворяющих этим неравенствам отображается в заштрихованную область на рисунке 4. Площадь этой области определяется как разность площади треугольника OEG, равной 1/2, и площади криволинейного треугольника OFEG. Площадь s этого криволинейного треугольника определяется формулой

и равна 1/3. Отсюда получаем, что площадь заштрихованной фигуры OEF равна 1/6. Таким образом, искомая вероятность равна 1/12.

Пусть длина отрезка равна l. Если принять за х и у расстояния от левого конца отрезка до точек, о которых говорится в условии задачи, то множество всех исходов можно отобразить на квадрат со стороной l, одна из сторон которого лежит на координатной оси х, а другая – на координатной оси у. Если принять условие у>х, то множество исходов отобразится на треугольник OВС, изображенный на рисунке 5. Площадь этого треугольника равна l 2 /2. Полученные отрезки будут иметь длины: х, у–х и l-у. Теперь вспомним геометрию. Из трёх отрезков можно составить треугольник тогда и только тогда, когда длина каждого отрезка меньше суммы длин двух других отрезков. Это условие в нашем случае приводит к системе трёх неравенств

Первое неравенство преобразуется к виду хl/2, а третье неравенство – к виду у<х+l/2. Множество пар чисел х, у, являющееся решением системы неравенств отображается в заштрихованный треугольник на рисунке 5. Площадь этого треугольника в 4 раза меньше площади треугольника OВС. Отсюда следует, что ответ задачи составляет 1/4.


Задача VI.

Примем длину отрезка за l. Пусть расстояние от левого конца отрезка до первой точки равно х, до второй точки – у, а до третьей точки – z. Тогда всё множество исходов отображается в куб, три ребра которого лежат на осях х, у и z прямоугольной системы координат, и с ребром длиной l. Допустим, что у>х. Тогда множество исходов отобразится в прямую призму АВСА 1 В 1 С 1 , изображенную на рисунке 6. Условие z>x означает, что все исходы будут отображаться в область, лежащую выше плоскости AD 1 C 1 B, показанной на рисунке 7. Эта плоскость Теперь все допустимые исходы будут отображаться в пирамиду с квадратом АА 1 В 1 В в основании и с высотой В 1 С 1 . Все исходы, удовлетворяющие условию z

Задачи для самостоятельного решения.

1. Два парохода должны подойти к одному и тому же причалу. Время прихода обоих пароходов независимо и равновозможно в течение данных суток. Определить вероятность того, что одному из пароходов придется ожидать освобождения причала, если время стоянки первого парохода – один час, а второго – два часа. Ответ: 139/1152.

2. На перекрестке установлен автоматический светофор, в котором одну минуту горит зеленый свет и полминуты красный, затем снова одну минуту - зеленый и полминуты красный и т.д. В случайный момент времени к перекрестку подъезжает автомобиль. Какова вероятность того, что он проедет перекресток без остановки? Ответ: 2/3

3. На бесконечную шахматную доску с шириной клетки 5см брошена монета радиуса 1,5см. Найти вероятность того, что монета расположится не более чем в двух клетках шахматной доски. Ответ: 16/25.

4. В окружность наудачу вписывается треугольник. Какова вероятность, что он остроугольный? Ответ: 1/4.

5. В окружность наудачу вписывается треугольник. Какова вероятность, что он прямоугольный? Ответ: 0.

6. Стержень длины а наудачу разломан на три части. Найдите вероятность того, что длина каждой части окажется больше а/4. Ответ: 1/16.

Вероямтность -- степень (мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае -- невероятным или маловероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность (и невероятность) бывает большей или меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднительна. Возможны различные градации «уровней» вероятности.

Классическое определение вероятности основано на понятии равно возможности исходов. В качестве вероятности выступает отношение количества исходов, благоприятствующих данному событию, к общему числу равновозможных исходов. Например, вероятность выпадения «орла» или «решки» при случайном подбрасывании монетки равна 1/2, если предполагается, что только эти две возможности имеют место и они являются равновозможными. Данное классическое «определение» вероятности можно обобщить на случай бесконечного количества возможных значений -- например, если некоторое событие может произойти с равной вероятностью в любой точке (количество точек бесконечно) некоторой ограниченной области пространства (плоскости), то вероятность того, что оно произойдет в некоторой части этой допустимой области равна отношению объёма (площади) этой части к объёму (площади) области всех возможных точек.

Вероятностное описание тех или иных явлений получило широкое распространение в современной науке, в частности в эконометрике, статистической физике макроскопических (термодинамических) систем, где даже в случае классического детерминированного описания движения частиц детерминированное описание всей системы частиц не представляется практически возможным и целесообразным. В квантовой физике сами описываемые процессы имеют вероятностную природу.

Возникновение понятия и теории вероятности

Первые работы об учении о вероятности относится к 17 веку. Такие как переписка французских учёных Б. Паскаля, П. Ферма (1654 год) и голландского учёного X. Гюйгенса (1657 год) давшего самую раннюю из известных научных трактовок вероятности]. По существу Гюйгенс уже оперировал понятием математического ожидания. Швейцарский математик Я. Бернулли, установил закон больших чисел для схемы независимых испытаний с двумя исходами (посмертно, 1713 год). В XVIII в. -- начале ХIХ в. теория вероятностей получает развитие в работах А. Муавра (Англия)(1718 год), П. Лаплас (Франция), К. Гаусса (Германия) и С. Пуассона (Франция). Теория вероятностей начинает применяться в теории ошибок наблюдений, развившейся в связи с потребностями геодезии и астрономии, и в теории стрельбы. Необходимо отметить, что закон распределения ошибок по сути предложил Лаплас сначала как экспоненциальная зависимость от ошибки без учета знака (в 1774 год), затем как экспоненциальную функцию квадрата ошибки (в 1778 году). Последний закон обычно называют распределением Гаусса или нормальным распределением. Бернулли (1778 год) ввел принцип произведения вероятностей одновременных событий. Адриен Мари Лежандр (1805) разработал метод наименьших квадратов.

Во второй половине XIX в. развитие теории вероятностей связано с работами русских математиков П. Л. Чебышева, А. М. Ляпунова и А. А. Маркова (старшего), а также работы по математической статистике А. Кетле (Бельгия) и Ф. Гальтона (Англия) и статистической физике Л. Больцмана (в Австрия), которые создали основу для существенного расширения проблематики теории вероятностей. Наиболее распространённая в настоящее время логическая (аксиоматическая) схема построения основ теории вероятностей разработана в 1933 советским математиком А. Н. Колмогоровым.

Классическое определение вероятности:

По классическому определению вероятность случайного события Р(А) равна отношению числа исходов, благоприятствующих А, к общему числу исходов, составляющих пространство элементарных событий, т.е.

вероятность статический классический теория

Вычисление вероятностей при этом сводится к подсчету элементов того или иного множества и часто оказывается чисто комбинаторной задачей, иногда весьма трудной.

Классическое определение оправдано, когда существует возможность предсказания вероятности на основании симметрии условий, при которых происходит эксперимент, и вследствие этого симметрии исходов испытания, что приводит к понятию "равно возможности" исходов.

Например. Если сделанная из однородного материала геометрически правильная игральная кость подбрасывается так, что она успевает сделать достаточно большое число оборотов перед тем, как упасть, то выпадение любой из ее граней считается равновозможным исходом.

По тем же соображениям симметрии считаются равновозможными исходы такого эксперимента, как вынимание тщательно перемешанных и неотличимых на ощупь белых и черных шаров так, что после регистрации цвета каждый шар возвращается обратно в сосуд и после тщательного перемешивания производится извлечение следующего шара.

Чаще всего такая симметрия наблюдается в искусственно организованных экспериментах, какими являются азартные игры.

Таким образом, классическое определение вероятности связано с понятием равно возможности и используется для экспериментов, сводящихся к схеме случаев. Для этого необходимо, чтобы события e1, e2, en были несовместными, т. е. никакие два из них не могут появиться вместе; такими, что образуют полную группу, т. е. они исчерпывают собой все возможные исходы (не может быть так, что в результате опыта ни одно из них не произошло); равновозможными при условии, что эксперимент обеспечивает одинаковую возможность появления каждого из них.

Не всякий эксперимент удовлетворяет схеме случаев. Если нарушается условие симметрии, то нет схемы случаев.

Формула (1.1), "классическая формула", применялась для вычисления вероятностей событий с самого начала появления науки о случайных явлениях.

Те опыты, которые не обладали симметрией, "подгонялись" под схему случаев. В настоящее время наряду с "классической формулой" существуют способы вычисления вероятностей, когда эксперимент не сводится к схеме случаев. Для этого используется статистическое определение вероятности.

Понятие статистической вероятности будет введено позднее, а сейчас вернемся к классической формуле.

Рассмотрим следующие примеры.

Пример 1. Опыт состоит в бросании двух монет. Найти вероятность того, что появится хотя бы один герб.

Решение. Случайное событие А - появление хотя бы одного герба.

Пространство элементарных событий в данном эксперименте определяется следующими исходами: Е = {ГГ, ГР, РГ, РР}, которые соответственно обозначаются e1, e2, e3, e4. Таким образом,

E=e1, e2, e3, e4; n=4.

Необходимо определить число исходов из Е, которые благоприятствуют появлению А. Это e1, e2, e3; их число m=3.

Используя классическую формулу определения вероятности события А, имеем

Пример 2. В урне 3 белых и 4 черных шара. Из урны вынимается один шар. Найти вероятность того, что этот шар белый.

Решение. Случайное событие А - появление белого шара. Пространство элементарных событий Е включает исходы e1, e2, e3, e4, e5, e6, e7, где ei - появление одного шара (белого или черного);

E={e1, e2, e3, e4, 5, e6, e7}, n=7.

Случайному событию А в пространстве Е благоприятствует 3 исхода; m=3. Следовательно,

Пример 3. В урне 3 белых и 4 черных шара. Из урны вынимается два шара. Найти вероятность того, что оба будут белыми.

Решение. Случайное событие А - оба шара будут белыми.

Пример 3 отличается от примера 2 тем, что в примере 3 исходами, составляющими пространство элементарных исходов Е, будут не отдельные шары, а комбинации из 7 шаров по 2. То есть, чтобы определить размерность Е, необходимо определить число комбинаций из 7 по 2. Для этого необходимо использовать формулы комбинаторики, которые приводятся в разделе "Комбинаторный метод". В данном случае для определения числа комбинаций из 7 по 2 используется формула для определения числа сочетаний

так как выбор производится без возвращения и порядок появления шаров неважен. Таким образом,

Число комбинаций, благоприятных для появления события А, определяется в виде

Следовательно, .

Статистическое определение вероятности

При рассмотрении результатов отдельных испытаний очень трудно найти какие-либо закономерности. Однако в последовательности одинаковых испытаний можно обнаружить устойчивость некоторых средних характеристик. Частостью какого-либо события в данной серии из n испытаний называется отношение m/n, числа m тех испытаний, в которых событие А наступило, к общему числу испытаний n. Почти в каждой достаточно длинной серии испытаний частость события А устанавливается около определенного значения, которое принимается за вероятность событияА. Устойчивость значения частости подтверждается специальными экспериментами. Статистические закономерности такого рода были впервые обнаружены на примере азартных игр, т. е. на примере тех испытаний, которые характеризуются равно возможностью исходов. Это открыло путь для статистического подхода к численному определению вероятности, когда нарушается условие симметрии эксперимента. Частость события А называют статистической вероятностью, которая обозначается

где mA - число экспериментов, в которых появилось событие А;

n - общее число экспериментов.

Формулы (1.1) и (1.2) для определения вероятности имеют внешнее сходство, но они различны по существу. Формула (1.1) служит для теоретического вычисления вероятности события по заданным условиям опыта. Формула (1.2) служит для экспериментального определения частости события. Чтобы воспользоваться формулой (1.2), необходим опытный статистический материал.

Аксиоматический подход к определению вероятности

Третьим подходом к определению вероятности является аксиоматический подход, при котором вероятности задаются перечислением их свойств.

Принятое аксиоматическое определение вероятности было сформулировано в 1933 г. А. Н. Колмогоровым. В этом случае вероятность задается как числовая функция Р(А) на множестве всех событий, определяемых данным экспериментом, которая удовлетворяет следующим аксиомам:

P(A)=1, если А - достоверное событие.

Если А и В несовместны.

Основные свойства вероятности

Для каждого случайного события А определена его вероятность, причем.

Для достоверного события U имеет место равенство P(U)=1.Свойства 1 и 2 следуют из определения вероятности.

Если события А и В несовместны, то вероятность суммы событий равна сумме их вероятностей. Это свойство носит название формулы сложения вероятностей в частном случае (для несовместных событий).

Для произвольных событий А и В

Это свойство носит название формулы сложения вероятностей в общем случае.

Для противоположных событий А и имеет место равенство.

Кроме этого, вводится невозможное событие, обозначенное, которому не способствует ни один исход из пространства элементарных событий. Вероятность невозможного события равна 0, P()=0 .

Пример. Вероятность того, что случайно выбранная в результате опроса семья имеет цветной, черно-белый или цветной и черно-белый телевизоры, равны соответственно 0.86; 0.35; 0.29. Какова вероятность, что семья имеет цветной или черно-белый телевизор?

Решение. Пусть событие А состоит в том, что семья имеет цветной телевизор.

Событие В состоит в том, что семья имеет черно-белый телевизор.

Событие С состоит в том, что семья имеет или цветной, или черно-белый телевизор. Событие С определяется через А и В в виде, А и В совместны, поэтому

Комбинаторный метод

Во многих вероятностных проблемах необходимо перечислить все возможные исходы эксперимента или элементарные события, которые возможны в данной ситуации, или вычислить их количество. Для этого можно использовать следующие правила.

Правило 1. Если операция состоит из двух шагов, в которых первый может быть сделан n1 способами и второй может быть сделан n2 способами, то вся операция может быть сделана за n1·n2 способов.

Под словом "операция" подразумевается любая процедура, процесс или метод выбора.

Чтобы подтвердить это правило, рассмотрим операцию, которая состоит из шагов xi и yi, шаг x может быть осуществлен n1 способами, т.е. , шаг y может быть осуществлен n2 способами, т.е. , тогда ряд всех возможных способов может быть представлен следующими n1n2 парами:

Пример. Сколько возможных исходов имеется в эксперименте, который состоит в подбрасывании двух игральных костей.

Решение. Под x и y в этом случае понимается выпадение любой грани на первой кости и на второй кости. Выпадение грани на первой кости возможно шестью способами xi, ; выпадение грани второй кости возможно также шестью способами xj, .

Всего возможных способов 6.6=36.

Правило 2. Если операция состоит из k шагов, в которых первый может быть сделан n1 способами, второй n2 способами, третий способами и т. д., k-й - способами, то вся операция может быть сделана за n1·n2…nk шагов.

Пример. Инспектор качества хочет выбрать часть из каждого из четырех контейнеров, содержащих 4, 3, 5 и 4 частей соответственно. Сколькими способами он может это сделать?

Решение. Общее число способов определяется как 4·3·5·4=240.

Пример. Сколькими возможными способами может ответить студент в тесте из 20 вопросов, если на каждый вопрос он может ответить "да" или "нет"?

Решение. Всех возможных способов 2·2...2=220=1048576.

Часто на практике возникает ситуация, когда объекты должны быть упорядочены.

Например: сколькими различными способами 6 персон могут сесть вокруг стола? Различные их расположения называются перестановками.

Пример. Сколько перестановок возможно для букв a, b, c?

Решение. Возможные расположения abc, acb, bac, bca, cab, cba. Число возможных расположений равно шести.

Обобщая данный пример, для n объектов всего n·(n-1)(n-2)…3 ·2 ·1 различных способов или n!, т. е. число перестановок n!=1·2·3...·(n-2)(n-1)n, при этом 0!=1.

Правило 3. Число перестановок n различных объектов равно n!.

Пример. Число перестановок из четырех букв 4!=24, но какое число перестановок получится, если выбирать по 2 буквы из четырех?

Решение. Мы должны заполнить две позиции из четырех букв. Для первой позиции - 4 способа, для второй позиции - 3 способа. Следовательно, используя правило 1, имеем 4·3=12.

Обобщая этот пример на n различных объектов, из которых выбирается r объектов без возвращения для r > 0, всего способов n(n-1)...(n-r+1). Это число обозначим, а получаемые комбинации называются размещениями.

Правило 4. Число размещений из n объектов по r определяется как

(для r = 0,1,...,n).

Перестановки, когда объекты располагаются по кругу, называются круговыми перестановками. Две круговые перестановки не являются различными (а считаются только одной), если соответствующие объекты в двух расположениях имеют те же самые объекты слева и справа.

Например: если четыре персоны играют в бридж, мы не получим различных расположений, если все игроки передвинутся на один стул справа.

Пример. Сколько круговых перестановок возможно из четырех персон, играющих в бридж? Решение. Если произвольно взять позицию одного из четырех игроков как фиксированную, можно трех остальных игроков расположить 3! способами, другими словами, имеем шесть различных круговых перестановок.

Обобщая этот пример, получаем следующее правило.

Правило 5. Число перестановок из n различных предметов, расположенных по кругу, равно (n-1)!.

До сих пор предполагалось, что n объектов, из которых мы выбираем r объектов и формируем перестановки, являются различными. Таким образом, упомянутые ранее формулы не могут быть использованы для определения числа способов расположения букв в слове "book" или числа способов расположения трех копий одной новеллы и одной копии каждой из четырех других новелл на полке.

Пример. Сколько различных перестановок букв в слове "book"?

Решение. Если важно различать буквы O, то мы их обозначим O1, O2 и тогда будем иметь 4!=24 различных перестановок букв в O1, O2 и K. Однако если мы опускаем индексы, то O1 O2 и O2, O1уже не различаются, тогда общее число перестановок равно.

Пример. Сколько различных способов расположения трех копий одной новеллы и одной копии других четырех новелл на полке?

Решение. Если обозначить три копии первой новеллы как a1, a2, a3 и другие четыре новеллы - b, c, d и e, то в данном случае имеем 7! различных способов и 3! способа расположить a1, a2, a3.

Если опустить индексы, то различных способов расположения копий.

Обобщая эти рассуждения, получим следующее правило.

Правило 6. Число перестановок n объектов, в которых n1 одного сорта, n2 - второго сорта, …, nk - k-го сорта и n1+n2+...+nk=n,

Много задач, в которых необходимо определить число способов выбора r объектов из n различных объектов, не обращая внимания на порядок, в котором они выбираются. Такие комбинации называются сочетаниями.

Пример. Сколькими способами можно выбрать трех кандидатов из 20-ти человек для общественного опроса?

Решение. Если нам важен порядок при выборе кандидатов, то число комбинаций, но каждый ряд из трех кандидатов может быть выбран 3! Способами; если порядок выбора не важен, то всего способов выбора.

Комбинации без возращения r объектов из n различных объектов, которые отличаются самими объектами, но не их порядком, называются сочетаниями.

Правило 7. Число комбинаций по r объектов из n разных объектов определяется числом, число сочетаний может обозначаться как.

Пример. Сколькими различными способами можно при шести подбрасываниях монеты получить 2 герба и 4 решки?

Решение. Так как порядок получения гербов и решек не важен, то, применяя правило 7, получим.

Пример. Сколько разных комитетов из двух химиков и одного физика может быть сформировано на факультете небольшого колледжа, имеющего 4 химика и 3 физика.

Решение. Число комбинаций из четырех химиков по 2 может быть получено (шестью) способами.

Один из трех физиков может быть выбран (тремя) способами.

Число комитетов, в соответствии с правилом 1, определяется как 6·3=18.

Пример. Сколькими способами можно разбить ряд из четырех объектов на три ряда, содержащих соответственно два, один и один объекта?

Решение. Обозначим данные четыре объекта буквами a, b, c, d. Число разбиений на два, один и один будет 12:

Разбиение из двух объектов можно получить способами, что дает 6 возможностей. Число способов сформировать второе разбиение. И для третьего разбиения число способов равно 1.

Согласно правилу 2 всего способов разбиения (6·2·1)=12.

Обобщая данный пример, получаем следующее правило.

Правило 8. Число способов, с помощью которых ряд из n различных объектов может быть разбит на k частей с n1 объектами в 1-й части, n2 во 2-й части, … и nk в k-й, определяется как

Пример. Сколькими способами 7 бизнесменов могут быть размещены в одном трехкомнатном и двух двухкомнатных номерах в отеле?

Решение. Согласно правилу 8 это можно сделать (двухсотдесятью) способами.

Доказательство правила 8

Так как n1 объектов могут быть выбраны в ряд способами, n2 могут быть выбраны

Согласно правилу 2 всего число способов будет определяться в виде

Задание для самостоятельной работы

1. Десять книг на одной полке расставляются наудачу. Определить вероятность того, что три определенные книги окажутся рядом.

Ответ: 0.066.

2. Из колоды карт (52 карты) наудачу извлекаются три карты. Найти вероятность того, что это будут тройка, семерка и туз.

Ответ: 0.0029.

3. Имеются пять билетов стоимостью по 1 рублю;

три билета стоимостью по 3 рубля;

два билета стоимостью по 5 рублей.

Наугад выбирается три билета. Определить вероятность того, что:

а) хотя бы два из этих билетов имеют одинаковую стоимость.

Ответ: 0.75;

б) все три билета стоят 7 рублей.

Ответ: 0.29.

4. В кошельке лежат три монеты достоинством по 20 копеек и семь монет достоинством по 3 копейки. Наудачу берется одна монета, а затем извлекается вторая монета достоинством в 20 копеек.

Определить вероятность того, что и первая монета имеет достоинство в 20 копеек.

Ответ: 0.22.

  • 5. Из десяти билетов лотереи выигрышными являются два. Определить вероятность того, что среди взятых наудачу пяти билетов:
    • а) один выигрышный;
    • б) два выигрышных;
    • в) хотя бы один выигрышный.

Ответ: 0.55, 0.22, 0.78.

6. В корзине имеется n шаров с номерами от 1 до n, шары извлекаются наудачу по одному без возвращения. Какова вероятность того, что при k первых извлечениях номера шаров совпадут с номерами извлечений.

Ответ: (n - k)!/n!

Использованная литература

  • 1. http://kurs.ido.tpu.ru/courses/theory_ver/tema2/tema2.html
  • 2. http://free.megacampus.ru/xbookM0018/index.html?go=part-003*page.htm
  • 3. http://www.testent.ru/publ/studenty/vysshaja_matematika/klassicheskoe_opredelenie_verojatnosti/35-1-0-1121
  • 4. http://ru.wikipedia.org/
  • 5. http://www.kolasc.net.ru/cdo/books/tv/page15.html
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то