Площадью боковой поверхности призмы называется. Объём и площадь поверхности правильной четырёхугольной призмы

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

«Урок теорема Пифагора» - Теорема Пифагора. Определить вид четырехугольника KMNP. Разминка. Знакомства с теоремой. Определить вид треугольника: План урока: Исторический экскурс. Решение простейших задач. И обрете лестницу долготою 125стоп. Вычислите высоту CF трапеции ABCD. Доказательство. Показ картинок. Доказательство теоремы.

«Объём призмы» - Понятие призмы. Прямая призма. Объем исходной призмы равен произведению S · h. Как найти объем прямой призмы? Призму можно разбить на прямые треугольные призмы с высотой h. Проведение высоты треугольника ABC. Решение задачи. Цели урока. Основные шаги при доказательстве теоремы прямой призмы? Изучение теоремы об объеме призмы.

«Многогранники призма» - Дайте определение многогранника. DABC – тетраэдр, выпуклый многогранник. Применение призм. Где применяются призмы? ABCDMP – октаэдр, составлен из восьми треугольников. ABCDA1B1C1D1 – параллелепипед, выпуклый многогранник. Выпуклый многогранник. Понятие многогранника. Многогранник А1А2..АnB1B2..Bn- призма.

«Призма 10 класс» - Призмой называется многогранник у которого грани находятся в параллельных плоскостях. Применение призмы в быту. Sбок.= Pоснован. + h Для прямой призмы: Sп.п = Pоснов. h + 2Sоснов. Наклонная. Правильная. Прямая. Призма. Формулы нахождения площади. Применение призмы в архитектуре. Sп.п = Sбок.+2Sоснован.

«Доказательство теоремы Пифагора» - Геометрическое доказательство. Значение теоремы Пифагора. Теорема Пифагора. Доказательство Евклида. «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов». Доказательства теоремы. Значение теоремы состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.

Определение 1. Призматическая поверхность
Теорема 1. О параллельных сечениях призматической поверхности
Определение 2. Перпендикулярное сечение призматической поверхности
Определение 3. Призма
Определение 4. Высота призмы
Определение 5. Прямая призма
Теорема 2. Площадь боковой поверхности призмы

Параллелепипед :
Определение 6. Параллелепипед
Теорема 3. О пересечении диагоналях параллелепипеда
Определение 7. Прямой параллелепипед
Определение 8. Прямоугольный параллелепипед
Определение 9. Измерения параллелепипеда
Определение 10. Куб
Определение 11. Ромбоэдр
Теорема 4. О диагоналях прямоугольного параллелепипеда
Теорема 5. Объем призмы
Теорема 6. Объем прямой призмы
Теорема 7. Объем прямоугольного параллелепипеда

Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а ребра, не лежащие в этих гранях, параллельны между собой.
Грани, отличные от оснований, называются боковыми .
Стороны боковых граней и оснований называются ребрами призмы , концы ребер называются вершинами призмы. Боковыми ребрами называются ребра, не принадлежащие основаниям. Объединение боковых граней называется боковой поверхностью призмы , а объединение всех граней называется полной поверхностью призмы. Высотой призмы называется перпендикуляр, опущенный из точки верхнего основания на плоскость нижнего основания или длина этого перпендикуляра. Прямой призмой называется призма, у которой боковые ребра перпендикулярны плоскостям оснований. Правильной называется прямая призма (Рис.3), в основании которой лежит правильный многоугольник.

Обозначения:
l - боковое ребро;
P - периметр основания;
S o - площадь основания;
H - высота;
P ^ - периметр перпендикулярного сечения;
S б - площадь боковой поверхности;
V - объем;
S п - площадь полной поверхности призмы.

V = SH
S п = S б + 2S о
S б = P ^ l

Определение 1 . Призматической поверхностью называется фигура, образованная частями нескольких плоскостей, параллельных одной прямой ограниченными теми прямыми, по которым эти плоскости последовательно пересекаются одна с другой*; эти прямые параллельны между собой и называются рёбрами призматической поверхности .
*При этом предполагается, что каждые две последовательные плоскости пересекаются и что последняя плоскость пересекает первую

Теорема 1 . Сечения призматической поверхности плоскостями, параллельными между собой (но не параллельными её рёбрам), представляют собой равные многоугольники.
Пусть ABCDE и A"B"C"D"E" - сечения призматической поверхности двумя параллельными плоскостями. Чтобы убедиться, что эти два многоугольника равны, достаточно показать, что треугольники ABC и А"В"С" равны и имеют одинаковое направление вращения и что то же имеет место и для треугольников ABD и A"B"D", ABE и А"В"Е". Но соответственные стороны этих треугольников параллельны (например АС параллельно А"С") как линии пересечения некоторой плоскости с двумя параллельными плоскостями; отсюда следует, что эти стороны равны (например АС равно А"С") как противоположные стороны параллелограмма и что углы, образованные этими сторонами, равны и имеют одинаковое направление.

Определение 2 . Перпендикулярным сечением призматической поверхности называется сечение этой поверхности плоскостью, перпендикулярной к её рёбрам. На основании предыдущей теоремы все перпендикулярные сечения одной и той же призматической поверхности будут равными многоугольниками.

Определение 3 . Призмой называется многогранник, ограниченный призматической поверхностью и двумя плоскостями, параллельными между собой (но непараллельными рёбрам призматической поверхности)
Грани, лежащие в этих последних плоскостях, называются основаниями призмы ; грани, принадлежащие призматической поверхности, - боковыми гранями ; рёбра призматической поверхности - боковыми рёбрами призмы . В силу предыдущей теоремы, основания призмы - равные многоугольники . Все боковые грани призмы - параллелограммы ; все боковые рёбра равны между собой.
Очевидно, что если дано основание призмы ABCDE и одно из рёбер АА" по величине и по направлению, то можно построить призму, проводя рёбра ВВ", СС", .., равные и параллельные ребру АА".

Определение 4 . Высотой призмы называется расстояние между плоскостями её оснований (НH").

Определение 5 . Призма называется прямой, если её основаниями служат перпендикулярные сечения призматической поверхности. В этом случае высотой призмы служит, конечно, её боковое ребро ; боковые грани будут прямоугольниками .
Призмы можно классифицировать по числу боковых граней, равному числу сторон многоугольника, служащего её основанием. Таким образом, призмы могут быть треугольные, четырёхугольные, пятиугольные и т.д.

Теорема 2 . Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.
Пусть ABCDEA"B"C"D"E" - данная призма и abcde - её перпендикулярное сечение, так что отрезки ab, bc, .. перпендикулярны к её боковым ребрам. Грань АВА"В" является параллелограммом; его площадь равна произведению основания АА" на высоту, которая совпадает с аb; площадь грани ВСВ"С" равна произведению основания ВВ" на высоту bc и т. д. Следовательно, боковая поверхность (т. е. сумма площадей боковых граней) равна произведению бокового ребра, иначе говоря, общей длины отрезков АА", ВВ", .., на сумму ab+bc+cd+de+еа.

Площадь боковой поверхности призмы. Здравствуйте! В этой публикации мы с вами разберём группу задач по стереометрии. Рассмотрим комбинацию тел – призмы и цилиндра. На данный момент эта статья завершает всю серию статей связанных с рассмотрением типов заданий по стереометрии.

Если в банке заданий будут появляться новые, то, конечно же, будут и дополнения на блоге в будущем. Но и того что уже есть вполне достаточно, чтобы вы могли научиться решать все задачи с кратким ответом в составе экзамена. Материала хватит на годы вперёд (программа по математике статична).

Представленные задания связаны с вычислением площади призмы. Отмечу, что ниже рассматривается прямая призма (и соответственно прямой цилиндр).

Без знания всяких формул, мы понимаем, что боковая поверхность призмы это все её боковые грани. У прямой призмы боковые грани это прямоугольники.

Площадь боковой поверхности такой призмы равна сумме площадей всех её боковых граней (то есть прямоугольников). Если речь идёт о правильной призме, в которую вписан цилиндр, то понятно, что все грани этой призмы являются РАВНЫМИ прямоугольниками.

Формально площадь боковой поверхности правильной призмы можно отразить так:


27064. Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Боковая поверхность данной призмы состоит из четырёх равных по площади прямоугольников. Высота грани равна 1, ребро основания призмы равно 2 (это два радиуса цилиндра), следовательно площадь боковой грани равна:

Площадь боковой поверхности:

73023. Найдите площадь боковой поверхности правильной треугольной призмы, описанной около цилиндра, радиус основания которого равен √0,12, а высота равна 3.

Площадь боковой поверхности данной призмы равна сумме площадей трёх боковых граней (прямоугольников). Для нахождения площади боковой грани необходимо знать её высоту и длину ребра основания. Высота равна трём. Найдём длину ребра основания. Рассмотрим проекцию (вид сверху):

Имеем правильный треугольник в который вписана окружность с радиусом √0,12. Из прямоугольного треугольника АОС можем найти АС. А затем и AD (AD=2АС). По определению тангенса:

Значит AD=2АС=1,2.Таким образом, площадь боковой поверхности равна:

27066. Найдите площадь боковой поверхности правильной шестиугольной призмы, описанной около цилиндра, радиус основания которого равен √75, а высота равна 1.

Искомая площадь равна сумме площадей всех боковых граней. У правильной шестиугольной призмы боковые грани это равные прямоугольники.

Для нахождения площади грани необходимо знать её высоту и длину ребра основания. Высота известна, она равна 1.

Найдём длину ребра основания. Рассмотрим проекцию (вид сверху):

Имеем правильный шестиугольник, в который вписана окружность радиуса √75.

Рассмотрим прямоугольный треугольник АВО. Нам известен катет ОВ (это радиус цилиндра). ещё можем определить угол АОВ, он равен 300 (треугольник АОС равносторонний, ОВ –биссектриса).

Воспользуемся определением тангенса в прямоугольном треугольнике:

АС=2АВ, так как ОВ является медианой, то есть делит АС пополам, значит АС=10.

Таким образом, площадь боковой грани равна 1∙10=10 и площадь боковой поверхности:

76485. Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен 8√3, а высота равна 6.

Площадь боковой поверхности указанной призмы из трёх равных по площади граней (прямоугольников). Чтобы найти площадь требуется знать длину ребра основания призмы (высота нам известна). Если рассматривать проекцию (вид сверху), то имеем правильный треугольник вписанный в окружность. Сторона этого треугольника выражается через радиус как:

Подробности этой взаимосвязи . Значит она будет равна

Тогда площадь боковой грани равна: 24∙6=144. А искомая площадь:

245354. Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 2. Площадь боковой поверхности призмы равна 48. Найдите высоту цилиндра.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то