Как интегрировать рациональные дроби. Интегрирование дробно-рациональной функции

Одним из важнейших классов функций, интегралы от которых выражаются через элементарные функции, является класс рациональных функций.

Определение 1. Функция вида где
- многочлены степеней
n и m называется рациональной. Целая рациональная функция, т.е. многочлен, интегрируется непосредственно. Интеграл от дробно-рациональной функции можно найти путем разложения на слагаемые, которые стандартным образом преобразуются к основным табличным интегралам.

Определение 2. Дробь
называется правильной, если степень числителя
n меньше степени знаменателя m . Дробь, у которой степень числителя больше или равна степени знаменателя, называется неправильной.

Любую неправильную дробь можно представить в виде суммы многочлена и правильной дроби. Это делается посредством деления многочлена на многочлен «столбиком», подобно делению чисел.

Пример.

Представим дробь
в виде суммы многочлена и правильной дроби:

x - 1


3

3

3

Первое слагаемое
в частном получается как результат деления старшего члена
, делимого на старший членх делителя. Затем умножаем
на делительх-1 и полученный результат вычитаем из делимого; аналогично находятся остальные слагаемые неполного частного.

Выполнив деление многочленов, получим:

Это действие называется выделением целой части.

Определение 3. Простейшими дробями называются правильные рациональные дроби следующих типов:

I.

II.
(K=2, 3, …).

III.
где квадратный трехчлен

IV.
где К=2, 3, …; квадратный трехчлен
не имеет действительных корней.

а) разложить знаменатель
на простейшие действительные множители (согласно основной теореме алгебры это разложение может содержать линейные двучлены вида
и квадратные трехчлены
, не имеющие корней);

б) написать схему разложения данной дроби на сумму простейших дробей. При этом каждому сомножителю вида
соответствуетk слагаемых видов I и II:

каждому сомножителю вида
соответствует е слагаемых видовIII и IV:

Пример.

Записать схему разложения дроби
в сумму простейших.

в) выполнить сложение полученных простейших дробей. Записать равенство числителей полученной и исходной дробей;

г) найти коэффициенты соответствующего разложения:
(методы решения будут рассмотрены ниже);

д) найденные значения коэффициентов подставить в схему разложения.

Интегрирование всякой правильной рациональной дроби после разложения на простейшие слагаемые сводится к нахождению интегралов одного из типов:




(k и e =2, 3, …).

Вычисление интеграла сводится к формулеIII:

интеграла - к формулеII:

интеграл можно найти по правилу, указанному в теории интегрирования функций, содержащих квадратный трехчлен;- путем преобразований, показанных ниже в примере 4.

Пример 1.

а) разложим знаменатель на множители:

б) напишем схему разложения подынтегральной функции на слагаемые:

в) выполним сложение простейших дробей:

Запишем равенство числителей дробей:

г) для нахождения неизвестных коэффициентов A, B, C существуют два метода.

Два многочлена равны тогда и только тогда, когда равны их коэффициенты при одинаковых степенях х , поэтому можно составить соответствующую систему уравнений. В этом заключается один из методов решения.

Коэффициенты при

свободные члены (коэф. при ):4А=8.

Решив систему, получим А=2 , В=1 , С= - 10 .

Другой метод - частных значений будет рассмотрен в следующем примере;

д) подставим найденные значения в схему разложения:

Подставляя под знак интеграла полученную сумму, и интегрируя каждое слагаемое отдельно, найдем:

Пример 2.

Тождество есть равенство, справедливое при любых значениях входящих в него неизвестных. На этом основан метод частных значений. Можно придавать х любые значения. Удобнее для вычислений брать те значения, которые обращают в нуль какие-либо слагаемые в правой части равенства.

Пусть х = 0 . Тогда 1 = А 0(0+2)+В 0 (0-1)+С (0-1)(0+2).

Аналогично при х = - 2 имеем 1= - 2В*(-3 ), при х = 1 имеем 1 = 3А .

Следовательно,

Пример 3.

г) сначала воспользуемся методом частных значений.

Пусть х = 0 , тогда 1 = А 1, А = 1 .

При х = - 1 имеем - 1+4+2+1 = - В(1+1+1) или 6 = - 3В , В = - 2 .

Для нахождения коэффициентов С и D нужно составить еще два уравнения. Для этого можно взять любые другие значения х , например х = 1 и х = 2 . Можно воспользоваться первым методом, т.е. приравнять коэффициенты при каких-либо одинаковых степенях х , например при и. Получим

1 = А+В+С и 4 = С + D – В.

Зная А = 1 , В = -2 , найдем С = 2 , D = 0 .

Таким образом, при вычислении коэффициентов можно сочетать оба метода.

Последний интеграл находим отдельно по правилу, указанному в методе веления новой переменной. Выделим полный квадрат в знаменателе:

положим,
тогда
Получим:

=

Подставляя в предыдущее равенство, найдем

Пример 4.

Найти

б)

д)

Интегрируя, имеем:

Первый интеграл преобразуем к формуле III:

Второй интеграл преобразуем к формуле II:

В третьем интеграле заменим переменную:

(При выполнении преобразований воспользовались формулой тригонометрии

Найти интегралы:

51.

52.

53.

54.

55.

56.

57.

58.

Вопросы для самопроверки.

    Какие из данных рациональных дробей являются правильными:

2. Верно ли записана схема разложения дроби на сумму простейших дробей?


Рациональная функция - это дробь вида , числитель и знаменатель которой - многочлены или произведения многочленов.

Пример 1. Шаг 2.

.

Умножаем неопределённые коэффициенты на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях:

Раскрываем скобки и приравниваем полученое к полученному выражению числитель исходной подынтегральной дроби:

В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений:

.

Сокращаем все иксы и получаем эквивалентную систему уравнений:

.

Таким образом, окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 2. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Теперь начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Теперь требуется составить и решить систему уравнений. Для этого приравниваем коэффициенты при переменной в соответствующей степени в числителе исходного выражения функции и аналогичные коэффициенты в полученном на предыдущем шаге выражения:

Решаем полученную систему:

Итак, , отсюда

.

Пример 3. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Как и в предыдущих примерах составляем систему уравнений:

Сокращаем иксы и получаем эквивалентную систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 4. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Как приравнивать числитель исходной дроби к выражению в числителе, полученному после разложения дроби на сумму простых дробей и приведения этой суммы к общему знаменателю, мы уже знаем из предыдуших примеров. Поэтому лишь для контроля приведём получившуюся систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

Пример 5. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Самостоятельно приводим к общему знаменателю эту сумму, приравнивать числитель этого выражения к числителю исходной дроби. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 6. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Производим с этой суммой те же действия, что и в предыдущих примерах. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 7. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

После известных действий с полученной суммой должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 8. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Внесём некоторые изменения в уже доведённые до автоматизма действия для получения системы уравнений. Есть искусственный приём, который в некоторых случаях помогает избежать лишних вычислений. Приводя сумму дробей к общему знаменателю получаем и приравнивая числитель этого выражения к числителю исходной дроби, получаем.

2., 5.
,

3.
, 6.
.

В интегралах 1-3 качествеu принимают. Тогда, послеn -кратного применения формулы (19) придем к одному из табличных интегралов

,
,
.

В интегралах 4-6 при дифференцировании упроститься трансцендентный множитель
,
или
, который следует принять заu .

Вычислить следующие интегралы.

Пример 7.

Пример 8.

Приведение интегралов к самому себе

Если подынтегральная функция
имеет вид:

,
,
и так далее,

то после двукратного интегрирования по частям получим выражение, содержащее исходный интеграл :

,

где
- некоторая постоянная.

Разрешая полученное уравнение относительно , получим формулу для вычисления исходного интеграла:

.

Этот случай применения метода интегрирования по частям называется «приведение интеграла к самому себе ».

Пример 9. Вычислить интеграл
.

В правой части стоит исходный интеграл . Перенеся его в левую часть, получим:

.

Пример 10. Вычислить интеграл
.

4.5. Интегрирование простейших правильных рациональных дробей

Определение. Простейшими правильными дробями I , II и III типов называются следующие дроби:

I . ;

II .
; (
- целое положительное число);

III .
; (корни знаменателя комплексные, то есть:
.

Рассмотрим интегралы от простейших дробей.

I .
; (20)

II . ; (21)

III .
;

Преобразуем числитель дроби таким образом, чтобы выделить в числителе слагаемое
, равное производной знаменателя.

Рассмотрим первый из двух полученных интегралов и сделаем в нем замену:

Во втором интеграле дополним знаменатель до полного квадрата:

Окончательно, интеграл от дроби третьего типа равен:

=
+
. (22)

Таким образом, интеграл от простейших дробей I-го типа выражается через логарифмы,II–го типа – через рациональные функции,III-го типа – через логарифмы и арктангенсы.

4.6.Интегрирование дробно-рациональных функций

Одним из классов функций, которые имеют интеграл, выраженный через элементарные функции, является класс алгебраических рациональных функций, то есть функций, получающихся в результате конечного числа алгебраических операций над аргументом.

Всякая рациональная функция
может быть представлена в виде отношения двух многочленов
и
:

. (23)

Будем предполагать, что многочлены не имеют общих корней.

Дробь вида (23) называется правильной , если степень числителя меньше степени знаменателя, то есть,m < n . В противном случае –неправильной .

Если дробь неправильная, то, разделив числитель на знаменатель (по правилу деления многочленов), представим дробь в виде суммы многочлена и правильной дроби:

, (24)

где
- многочлен,- правильная дробь, причем степень многочлена
- не выше степени (n -1).

Пример.

Так как интегрирование многочлена сводится к сумме табличных интегралов от степенной функции, то основная трудность при интегрировании рациональных дробей заключается в интегрировании правильных рациональных дробей.

В алгебре доказано, что всякая правильная дробь разлагается на сумму рассмотренных вышепростейших дробей, вид которых определяется корнями знаменателя
.

Рассмотрим три частных случая. Здесь и далее будем считать, что коэффициент при старшей степени знаменателя
равен единице=1, то есть
многочлен приведенный .

Случай 1. Корни знаменателя, то есть, корни
уравнения
=0, действительны и различны. Тогда знаменатель представим в виде произведения линейных множителей:

а правильная дробь разлагается на простейшие дроби I-готипа:

, (26)

где
– некоторые постоянные числа, которые находятся методом неопределенных коэффициентов.

Для этого необходимо:

1. Привести правую часть разложения (26) к общему знаменателю.

2. Приравнять коэффициенты при одинаковых степенях тождественных многочленов, стоящих в числителе левой и правой частей. Получим систему линейных уравнений для определения
.

3. Решить полученную систему и найти неопределенные коэффициенты
.

Тогда интеграл дробно-рациональной функции (26) будет равен сумме интегралов от простейших дробей I-готипа, вычисляемых по формуле (20).

Пример. Вычислить интеграл
.

Решение. Разложим знаменатель на множители, используя теорему Виета:

Тогда, подынтегральная функция разлагается на сумму простейших дробей:

.

х :

Запишем систему трех уравнений для нахождения
х в левой и правой частях:

.

Укажем более простой способ нахождения неопределенных коэффициентов, называемый методом частных значений .

Полагая в равенстве (27)
получим
, откуда
. Полагая
получим
. Наконец, полагая
получим
.

.

Случай 2. Корня знаменателя
действительны,но среди них есть кратные (равные) корни. Тогда знаменатель представим в виде произведения линейных множителей, входящих в произведение в той степени, какова кратность соответствующего корня:

где
.

Правильная дробь будет разлагаться сумму дробейI–го иII-го типов. Пусть, например,- корень знаменателя кратностиk , а все остальные (n - k ) корней различны.

Тогда разложение будет иметь вид:

Аналогично, если существуют другие кратные корни. Для некратных корней в разложение (28) входят простейшие дроби первого типа.

Пример. Вычислить интеграл
.

Решение. Представим дробь в виде суммы простейших дробей первого и второго рода с неопределенными коэффициентами:

.

Приведем правую часть к общему знаменателю и приравняем многочлены, стоящие в числителях левой и правой части:

В правой части приведем подобные при одинаковых степенях х :

Запишем систему четырех уравнений для нахождения
и. Для этого приравняем коэффициенты при одинаковых степеняхх в левой и правой части

.

Случай 3. Среди корней знаменателя
есть комплексные однократные корни. То есть, в разложение знаменателя входят множители второй степени
, не разложимые на действительные линейные множители, причем они не повторяются.

Тогда в разложении дроби каждому такому множителю будет соответствовать простейшая дробь IIIтипа. Линейным множителям соответствуют простейшие дробиI–го иII-го типов.

Пример. Вычислить интеграл
.

Решение.
.

.

.

«Математик так же, как художник или поэт, создает узоры. И если его узоры более устойчивы, то лишь потому, что они составлены из идей... Узоры математика так же, как узоры художника или поэта, должны быть прекрасны; идеи так же, как цвета или слова, должны соответствовать друг другу. Красота есть первое требование: в мире нет места для некрасивой математики ».

Г.Х.Харди

В первой главе отмечалось, что существуют первообразные довольно простых функций, которые уже нельзя выразить через элементарные функции. В связи с этим, огромное практическое значение приобретают те классы функций, о которых можно точно сказать, что их первообразные – элементарные функции. К такому классу функций относятся рациональные функции , представляющие собой отношение двух алгебраических многочленов. К интегрированию рациональных дробей приводят многие задачи. Поэтому очень важно уметь интегрировать такие функции.

2.1.1. Дробно-рациональные функции

Рациональной дробью (или дробно-рациональной функцией )называется отношение двух алгебраических многочленов:

где и – многочлены.

Напомним, что многочленом (полиномом , целой рациональной функцией ) n -й степени называется функция вида

где действительные числа. Например,

– многочлен первой степени;

– многочлен четвертой степени и т.д.

Рациональная дробь (2.1.1) называется правильной , если степень ниже степени , т.е. n <m , в противном случае дробь называется неправильной .

Любую неправильную дробь можно представить в виде суммы многочлена (целой части) и правильной дроби (дробной части). Выделение целой и дробной частей неправильной дроби можно производить по правилу деления многочленов «уголком».

Пример 2.1.1. Выделить целую и дробную части следующих неправильных рациональных дробей:

а) , б) .

Решение . а) Используя алгоритм деления «уголком», получаем

Таким образом, получаем

.

б) Здесь также используем алгоритм деления «уголком»:

В результате, получаем

.

Подведём итоги. Неопределённый интеграл от рациональной дроби в общем случае можно представить суммой интегралов от многочлена и от правильной рациональной дроби. Нахождение первообразных от многочленов не представляет трудностей. Поэтому в дальнейшем будем рассматривать в основном правильные рациональные дроби.

2.1.2. Простейшие рациональные дроби и их интегрирование

Среди правильных рациональных дробей выделяют четыре типа, которые относят кпростейшим (элементарным) рациональным дробям:

3) ,

4) ,

где – целое число, , т.е. квадратный трёхчлен не имеет действительных корней.

Интегрирование простейших дробей 1-го и 2-го типа не представляет больших трудностей:

, (2.1.3)

. (2.1.4)

Рассмотрим теперь интегрирование простейших дробей 3-го типа, а дроби 4-го типа рассматривать не будем.

Начнём с интегралов вида

.

Данный интеграл обычно вычисляют путем выделения полного квадрата в знаменателе. В результате получается табличный интеграл следующего вида

или .

Пример 2.1.2. Найти интегралы:

а) , б) .

Решение . а) Выделим из квадратного трёхчлена полный квадрат:

Отсюда находим

б) Выделив из квадратного трёхчлена полный квадрат, получаем:

Таким образом,

.

Для нахождения интеграла

можно выделить в числителе производную знаменателя и разложить интеграл на сумму двух интегралов: первый из них подстановкой сводится к виду

,

а второй – к рассмотренному выше.

Пример 2.1.3. Найти интегралы:

.

Решение . Заметим, что . Выделим в числителе производную знаменателя:

Первый интеграл вычисляется при помощи подстановки :

Во втором интеграле выделим полный квадрат в знаменателе

Окончательно, получаем

2.1.3. Разложение правильной рациональный дроби
на сумму простейших дробей

Любую правильную рациональную дробь можно представить единственным образом в виде суммы простейших дробей. Для этого знаменатель нужно разложить на множители. Из высшей алгебры известно, что каждый многочлен с действительными коэффициентами

Контрольную работу на интегрирование функций, в том числе и рациональных дробей задают студентам 1, 2 курсов. Примеры интегралов в основном будут интересны для математиков, экономистов, статистов. Данные примеры задавали на контрольной работе в ЛНУ им. И. Франка. Условия следующих примеров "Найти интеграл" или "Вычислить интеграл", поэтому для экономии места и Вашего времени их не выписывали.

Пример 15. Мы пришли к интегрированию дробно-рациональных функций . Они занимают особое место среди интегралов, поскольку требуют много времени на вычисление и помогают преподавателям проверить Ваши знания не только по интегрированию. Для упрощения функции под интегралом добавим и вычтем в числителе выражение, которое позволит разбить функцию под интегралом на две простые


В результате один интеграл находим довольно быстро, во втором нужно дробь разложить на суму элементарных дробей

При сведении к общему знаменателю получим такие числительные

Далее раскрываем скобки и группируем

Приравниваем значение при одинаковых степенях "икс" справа и слева. В результате придем к системе трех линейных уравнений (СЛАУ) с тремя неизвестными.

Как решать системы уравнений описано в других статьях сайта. В конечном варианте Вы получите следующее решения СЛАУ
A=4; B=-9/2; C=-7/2.
Подставляем постоянные в разложение дроби на простейшие и выполняем интегрирование


На этом пример решен.

Пример 16. Опять нужно найти интеграл от дробно-рациональной функции. Для начала кубическое уравнение, которое содержится в знаменателе дроби разложим на простые множители

Далее выполняем разложение дроби на простейшие

Сводим правую сторону к общему знаменателю и раскрываем скобки в числителе.


Приравниваем коэффициенты при одинаковых степенях переменной. Снова придем к СЛАУ с тремя неизвестными

Подставляем значения А,В,С в разложение и вычисляем интеграл

Первые два слагаемых дают логарифм, последний тоже легко найти.

Пример 17. В знаменателе дробно-рациональной функции имеем разницу кубов. Ее по формулам сокращенного умножения раскладываем на два простых множителя

Далее полученную дробную функцию расписываем на сумму простых дробей и сводим их под общий знаменатель

В числителе получим следующее выражение.

Из него формируем систему линейных уравнений для вычисления 3 неизвестных

A=1/3; B=-1/3; C=1/3.
Подставляем А, В, С в формулу и выполняем интегрирование. В результате придем к такому ответу


Здесь числитель второго интеграла превращали в логарифм, при этом остаток под интегралом дает арктангенс.
Подобных примеров на интегрирование рациональных дробей в интернете очень много. Похожие примеры Вы можете найти из приведенных ниже материалов.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то