Интерференционные методы определения длины световой волны. Определение длины волны света

Цель работы . Изучить явления дифракции и интерференции световых волн, использование этих явлений в медицинских и биологических исследованиях. Научить определять длину световой волны с помощью дифракционной решетки.

Актуальность. Интерферометры, в основе работы которых лежит явление интерференции света, широко используются в медицине, в частности, с помощью интерферометра можно определять показатели преломления с точностью до шестого знака после запятой. Интерференционные методы применяют для определения коэффициентов линейного и объемного расширения, показателей преломления газов и паров с очень высокой степенью точности. Основанные на этом принципе приборы применяются для контроля за составом воздуха в шахтах, рудниках, производственных помещениях. Этот же метод используется в медицине для исследования изменений в составе крови при некоторых трудно распознаваемых заболеваниях. С помощью интерферометров с высокой степенью точности определяют длину волн, небольшие расстояния, определяют качество оптических поверхностей.

Применение дифракционной решетки в оптических приборах позволяет увеличить их разрешающую способность. Дифракция монохроматических рентгеновских лучей в поликристаллических телах позволяет произвести рентгеноструктурный качественный и количественный анализы. Этим методом Дж. Уотсон и Ф. Крик установили структуру ДНК (1962 г.).

Так как условия отражения и поглощения электромагнитных волн телами зависят, в частности, от длины волны, то эта особенность голографии позволяет использовать её в качестве метода внутривидения (интроскопия).

Приборы и принадлежности: дифракционная решетка, экран, линейка.

Теоретическая часть

Интерференция света. Интерференцией света называется явление, возникающее при наложении световых волн и сопровождаемое их усилением или ослаблением. Устойчивая интерференционная картина возникает при наложении когерентных волн. Когерентными волнами называются волны с равными частотами и одинаковыми фазами или имеющими постоянный сдвиг фаз. Усиление световых волн при интерференции (условие максимума) происходит в том случае, Δ укладывается четное число длин полуволн:

где k – порядок максимума, k=0,±1,±2,±,…±n;

λ – длина световой волны.

Ослабление световых волн при интерференции (условие минимума) наблюдается в том случае, если в оптической разности хода Δ укладывается нечетное число длин полуволн:

где k – порядок минимума.

Оптической разностью хода двух лучей называется разность расстояний от источников до точки наблюдения интерференционной картины.


Интерференция в тонких пленках. Интерференцию в тонких пленках можно наблюдать в мыльных пузырях, в пятне керосина на поверхности воды при освещении их солнечным светом.

Пусть на поверхность тонкой пленки падает луч 1 (см рис.2). Луч, преломившись на границе воздух - пленка, проходит через пленку, отражается от её внутренней поверхности, подходит к внешней поверхности пленки, преломляется на границе пленка – воздух и выходит луч . В точку выхода луча направляем луч 2, который проходит параллельно лучу 1. Луч 2 отражается от поверхности пленки , накладывается на луч , и оба луча интерферируют.

При освещении пленки полихроматическим светом получаем радужную картину. Это объясняется тем, что пленка неоднородна по толщине. Следовательно, возникают различные по величине разности хода, которым соответствуют разные длины волн (окрашенные мыльные пленки, переливчатые цвета крыльев некоторых насомых и птиц, пленки нефти или масел на поверхности воды и т.д.).

Интерференция света используется в приборах – интерферометрах. Интерферометрами называются оптические устройства, при помощи которых можно пространственно разделить два луча и создать между ними определенную разность хода. Применяются интерферометры для определения длины волн с высокой степенью точности небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

В санитарно–гигиенических целях интерферометр применяется для определения содержания вредных газов.

Сочетание интерферометра и микроскопа (интерференционный микроскоп) используется в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.

Принцип Гюйгенса – Френеля. Согласно Гюйгенсу, каждая точка среды, до которой доходит первичная волна в данной момент, является источником вторичных волн. Френель уточнил это положение Гюйгенса, добавив, что вторичные волны являются когерентными, т.е. при наложении они будут давать устойчивую интерференционную картину.

Дифракция света. Дифракцией света называются явления отклонения света от прямолинейного распространения.

Дифракция в параллельных лучах от одной щели. Пусть на цель шириной в падает параллельный пучок монохроматического света (см. рис. 3):

На пути лучей установлена линза L , в фокальной плоскости которой находится экран Э . Большинство лучей не дифрагируют, т.е. не меняют своего направления, и они фокусируются линзой L в центре экрана, образуя центральный максимум или максимум нулевого порядка. Лучи, дифрагирующие под равными углами дифракции φ , будут на экране образовывать максимумы 1,2,3,…, n – порядков.

Таким образом, дифракционная картина, полученная от одной щели в параллельных лучах при освещении монохроматическим светом, представляет собой светлую полосу с максимальной освещенностью в центре экрана, затем идет темная полоса (минимум I – го порядка), потом идет светлая полоса (максимум 1 – го порядка), темная полоса (минимум 2 – го порядка), максимум 2 – го порядка и т.д. Дифракционная картина симметрична относительно центрального максимума. При освещении щели белым светом на экране образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света.

Условия max и min дифракции. Если в оптической разности хода Δ укладывается нечетное число отрезков, равных , то наблюдается усиление интенсивности света (max дифракции):

где k – порядок максимума; k =±1,±2,±…,±n;

λ – длина волны.

Если в оптической разности хода Δ укладывается четное число отрезков, равных , то наблюдается ослабление интенсивности света (min дифракции):

где k – порядок минимума.

Дифракционная решетка. Дифракционная решетка представляет собой чередующиеся непрозрачные для прохождения света полосы с прозрачными для света полосами (щелями) равной ширины.



Основной характеристикой дифракционной решетки является её период d . периодом дифракционной решетки называется суммарная ширина прозрачной и непрозрачной полосы:

Дифракционная решетка используется в оптических приборах для усиления разрешающей способности прибора. Разрешающая способность дифракционной решетки зависит от порядка спектра k и от числа штрихов N :

где R – разрешающая способность.

Вывод формулы дифракционной решетки. Направим на дифракционную решетку два параллельных луча: 1 и 2 так, чтобы расстояние между ними было равно периоду решетки d .


В точках А и В лучи 1 и 2 дифрагируют, отклоняясь от прямолинейного направления на угол φ – угол дифракции.

Лучи и фокусируются линзой L на экран, расположенный в фокальной плоскости линзы (рис. 5). Каждую щель решетки можно рассматривать как источник вторичных волн (принцип Гюйгенса – Френеля). На экране в точке Д наблюдаем максимум интерференционной картины.

Из точки А на ход луча опускаем перпендикуляр и получаем точку С. рассмотрим треугольник АВС : треугольник прямоугольный, ÐВАС=Ðφ как углы с взаимно перпендикулярными сторонам. Из Δ АВС:

где АВ=d (по построению),

СВ = Δ – оптическая разность хода.

Так как в точке Д наблюдаем max интерференции, то

Лабораторная работа № 4


ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ

Принадлежности: прибор для определения длины световой волны, источник света, дифракционная решетка.

Дифракционной решеткой называют систему большого числа близких параллельных щелей. Простейшая дифракционная решетка представляет собой стеклянную пластинку, на которой с помощью делительной машины нанесен ряд параллельных штрихов.

Места, прочерченные делительной машиной, рассеивают свет так, что в направлении наблюдения попадает лишь ничтожная часть, поэтому штрихи являются практически почти непрозрачными промежутками между неповрежденными частями пластинки - щелями.

В простейшем случае нормального падения света на прозрачную дифракционную решетку с шириной прозрачных штрихов "d" и непрозрачных "b" положение максимумов определяется равенством:

mλ=(a+b)sinφ =d sinφ

где φ - угол дифракции

λ - длина световой волны

m - порядок спектра

d=(a+b) - так называемая "постоянная решетка"

При m=0 условие максимума удовлетворяется для всех длин волн, т.е. при

φ=0 наблюдается центральная светлая (белая) полоса, справа и слева симметрично располагаются цветные максимумы (цветные полосы). Предельное число спектров, которое можно получить при помощи решетки дается соотношением:

Одной из основных характеристик дифракционной решетки является ее разрешающая способность. Разрешающая способность решетки определяется из условия Рэлея, по которому: две спектральные линии разрешаются (видны

раздельно), если максимум одной линии (λ 1) попадает на место ближайшего минимума второй линии (λ 2) .


Из этого следует, что разрешающая способность решетки /А/ будет:

где N - число штрихов решетки.

В решетке большая разрешающая сила достигается за счет больших значений N ,

т.к. порядок т невелик.


Прибор для определения длины световой волны. Назначение и устройство.

Прибор /рис.1/ состоит из деревянной рейки /1/ прямоугольного сечения
длиной несколько больше 500 мм. На верхней поверхности рейки нанесена шкала
с миллиметровыми делениями. На боковых гранях рейки сделаны пазы, идущие по всей длине. По середине рейки, внизу, прикреплена



металлическая скоба /2/, с которой при помощи шарнира скреплен конец металлического стержня /3 /. На этом стержне рейка может быть закреплена под разными углами винтом /4/. К торцу передней части рейки прикреплена рамка /5/. В рамку вкладывается дифракционная решетка с 500 и с 1000 штрихами на 1 см. С другого конца на рейку надевается ползунок /6/, лапки которого скользят в пазах рейки. Ползунок может перемещаться по всей, длине рейки. На ползунке укреплен щиток /7/, верхняя часть которого окрашена в черный цвет.

Нижняя часть щитка белая с черной шкалой. Ноль шкалы расположен посередине щитка. Сантиметровые деления отмечены порядковыми цифрами. Под нулевым делением в щитке сделано небольшое прямоугольное окно /8/, а под ним вдоль нулевого деления шкалы сделана прорезь. К прибору прилагается одна дифракционная решетка с 500 делениями на 1 см.

РАБОТА С ПРИБОРОМ


Для выполнения лабораторной работы по определению длины световой волны необходимо иметь штатив или подставку от подъемного столика /9/ /рис.4/ и электрическую лампочку в патроне на штативе.

Патрон с электрической лампочкой устанавливается на демонстрационном столе так, чтобы работающим была видна только одна накаленная нить лампы в виде вертикальной прямой. Для этой цели удобна "софитка" - лампа /рис.2/, которая имеет одну нить накала.

Для работы можно воспользоваться обычной электрической лампой, расположив ее так, как показано на рис.3.

Установку для работы собирают так, как показано на рис.4.

Прибор укрепляется на подставке от подъемного столика на такой высоте, чтобы горизонтально установленная рейка была на


уровне глаз наблюдателя. На задний конец рейки надевают ползунок со шкалой, обращенной к рамке. В рамку вставляют дифракционную решетку /при этом штрихи, нанесенные на дифракционную решетку, должны быть параллельны щели на щитке/. Приблизив глаз к дифракционной решетке, направляют прибор на источник света так, чтобы фиолетовая часть каждого спектра была обращена к середине шкалы /к щели/.

При решетке с 500 штрихами на 1 см обычно видны три пары спектров. В этом случае лучше пользоваться первой или второй парой спектров /считая от окна/. Дальнейшие спектры бывают обычно расплывчаты и их границы определить трудно. Если спектры располагаются не параллельно шкале, то это означает, что штрихи на решетке не параллельны нити накала лампы. Слегка поворачивают лампу с решеткой, добиваются, чтобы спектры располагались параллельно шкале. В лабораторной работе определяют длины световой волны фиолетовых и красных лучей на грани их видимости. Для этого отсчитывают по шкале в первых спектрах, расположенных по обе стороны от окна, расстояние от середины шкалы до крайних фиолетовых лучей и крайних красных /"С"/.

Если полученные значения у левого спектра отличны от соответствующих значений у правого, то находят среднее значение как для фиолетовых, так и для красных лучей /сумму значений делят на два/, затем по шкале на рейке определяют в миллиметрах расстояние от щитка до дифракционной решетки, которая расположена на нулевом делении шкалы. Деля расстояние "С" от середины шкалы щитка до наблюдаемого луча на расстояние l от щитка до дифракционной

решетки, получают тангенс угла φ , под каким виден данный луч. Синус этого угла равен отношению длины световой волны наблюдаемого луча к расстоянию между

соседними штрихами решетки /т.е. постоянной решетки d /. Так как φ мал, то без существенной погрешности можно допустить, что tgφ≈sinφ , тогда будем иметь:

или откуда:

В нашем случае "d " будет равно 1/500 см решетки с 500 штрихами на 1 см или 1/50мм с 50 штрихами на 1 мм. Если определяют длину световой волны по

спектрам второго порядка, то вместо λ надо брать (поставить) . Тогда:

Для получения более точных результатов необходимо l брать возможно большим и передвигать ползунок со щитка по рейке до тех пор, пока начало /или конец/ спектра не окажется на штрихе щитка и С выразится в целых миллиметрах. Результаты, которые получают с прибором, можно видеть из следующего примера:

Крайние фиолетовые лучи видны на расстоянии 11 мм от нулевого деления шкалы (как справа, так и слева). Шкала отстоит от дифракционной решетки на расстоянии 495 мм. Крайние красные лучи видны на расстоянии 19 мм при шкале, отстоящей на 490 мм.

Тогда длина волны фиолетовых лучей равна:

мк


а, длина красных лучей равна:

мк


Лабораторную работу можно поставить иначе: по заранее известным длинам световых волн определяют постоянную данной дифракционной решетки. Постоянная решетки: мм

, 1мм=10 -3 мк, где m=1,2,3,…

ОПРЕДЕЛЕНИЕ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ДИФРАКЦИОННОЙ РЕШЕТКИ

Зная постоянную решетки и измерив линейкой длину решетки, можно найти число штрихов в ней N (такая оценка числа N предполагает, что освещены и работают все штрихи решетки).

Порядок дифракционного спектра m , входящего в выражение разрешающей способности:

Надо взять из опыта, какой наивысший из дифракционных спектров имеет еще достаточную для наблюдения интенсивность (в редких случаях бывает больше, чем 3 или 4)

ЛИТЕРАТУРА: 1. Ландсберг, Оптика.

2. Курс физики под редакцией академика Папалекси, т. 2.

3. Фриш, Техника спектроскопа.

ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ

ГОНИОМЕТРА

ГОНИОМЕТР. Горизонтальный лимб 1 (круг) гониометра разделен на градусы или их части. В центре лимба находится предметный столик А, на который ставится дифракционная решетка. Столик может вращаться около вертикальной оси. Угловое положение столика с решеткой отсчитывается по угловому нониусу N2, скользящему по лимбу. На штативе гониометра неподвижно укреплена коллиматорная труба К с вертикальной щелью S. Коллиматор посылает на решетку узкий параллельный пучок лучей. Против коллиматора находится труба М, которая может вращаться вокруг вертикальной оси, проходящей через центр лимба. Угловое положение трубы фиксируется при


помощи нониуса N1. В окуляре оптической трубы М помещен крест нитей, устанавливаемый в процессе работы на линии дифракционного спектра при

измерении углов φ , образованных направлениями главных максимумов с неотклоняемыми решеткой лучами.

ОБЩИЕ СВЕДЕНИЯ: Дифракцией волн называется огибание волнами небольших препятствий или краев отверстий, соизмеримых с длинной волны. Совокупность узких параллельных щелей с одинаковой шириной, соизмеримой с длинной волны, расположенных на равных расстояниях друг от друга, называется дифракционной решеткой.

Если на дифракционную решетку направить пучок параллельных лучей с одинаковой длинной волны, то часть пучка пройдет через решетку по первоначальному направлению, а часть отклонится от первоначального

направления на угол φ . Этот угол носит название угла дифракции. Его величина зависит от расстояния между серединами двух соседних щелей (а+b) и длины

волны А, падающего света.

Если собрать прошедшие сквозь дифракционную решетку лучи в фокусе линзы, то наибольшая интенсивность света окажется в точке, соответствующей

углу φ =0. Следующие максимумы интенсивности получаются в точках,

соответствующим углам φ к, удовлетворяющим уравнению:

(a+b)sin φ к = kλ (1), где (а+b) - постоянная решетки,

k - порядок дифракционного спектра (k =0,1,2,...).

Формула (1) показывает, что, зная (а+b), φ к и k, можно найти длину световой волны.

Для измерения углов дифракции в этой работе применяют гониометр. На столике гониометра перпендикулярно к оси коллиматора устанавливают дифракционную решетку. Щель коллиматора освещают лампой.

Если установить зрительную трубу по направлению оси коллиматора, то в поле зрения трубы мы увидим нулевой центральный максимум (изображение щели коллиматора).

Смещая трубу вправо или влево, увидим сначала спектр первого порядка. При дальнейшем поворачивании трубы в поле зрения ее окажутся спектр второго порядка и т.д..

Для определения угла дифракции какой-либо волны необходимо навести визирную лампу зрительной трубы на линию соответствующего цвета в желаемом порядке справа или слева от нулевого максимума.

Пусть отсчет положения трубы от нуля шкалы гониометра при наводке

слева будет α и справа β. Тогда разность отсчетов β-α дает удвоенный угол дифракции.


ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Прочесть описание гониометра.

2. Направить коллиматор на лампу. Проверить, стоит ли дифракционная решетка
перпендикулярно к выходящему из коллиматора пучку лучей.

3. Навести зрительную трубу на центральный дифракционный максимум.
Перемещением трубы окуляра добиться отчетливого изображения нити,
натянутой в окуляре и отчетливого изображения щели коллиматора.

4. Навести пересечение нитей на синюю линию в спектре первого порядка сначала
слева, затем справа. При каждой установке отсчет положения трубы
производить по нониусу так, что

где α и β - отсчет по нониусу.

5. Повторить измерения, указанные в пункте 4 для красной линии в спектре
второго порядка.

6. Определить углы дифракции по формуле:


Вопросы и задания для подготовки к лабораторной работе №4

"ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ

ДИФРАКЦИОННОЙ РЕШЕТКИ"

Тема: "ДИФРАКЦИЯ СВЕТА"

1. Основные представления о современных взглядах на природу света.

2. Четко знать, какие явления подтверждают волновую и корпускулярную
природу света. Куда отнести явление дифракции света?

3. Принцип Гюйгенса. В чем суть дополнений этого принципа, внесенных
Френелем? /Принцип Гюйгенса-Френеля/.

4. В чем заключается явление дифракции света? Уметь дать четкое
определение.

5. Метод зон Френеля. Распространяется ли свет прямолинейно или нет?
Дифракционные явления Френеля /познакомиться с применением к
конкретным случаям метода зон Френеля/.

6. Дифракционные явления Фраунгофера /чем отличаются от дифракционных
явлений Френеля/. Дифракция Фраунгофера на одно щели, условие min и
max, график распространения /распределения интенсивности света/.

7. Дифракционная решетка - что это такое, как освещается, как идет свет
после решетки, разность хода между лучами, как влияют min и max.
Дополнительные min и max - с чем они связаны, как влияют на
дифракционную картину.

8. Почему белый свет разлагается дифракционной решеткой на цветной
спектр.

9. Уметь чертить оптическую схему дифракционного спектроскопа, знать
назначение щели коллиматора.

10. Характеристики решетки: дисперсия и разрешающая способность. От чего
конкретно они зависят? Критерий Рэлея?

11. Как выглядят дифракционные спектры: чередование цветов, порядков? Как
влияет на вид спектра замена одной решетки другой / с отличной
постоянной d /?

12. Ограниченно ли число порядков дифракции или нет? При любом ли

соотношении между постоянной d и длинной волны А, наблюдается дифракция света?

13. Кратко познакомиться с дифракцией в объемных дифракционных решетках
/решетках кристаллов/, формулой Вульфа-Брегга.

14. Четко представлять содержание опытов работы, основные результаты.

15. В чем заключается отрицательна роль дифракционных явлений в
оптических приборах?

Дифракция света заключается в отклонении световых лучей от прямолинейного пути в случае прохождения их через малые отверстия или мимо малого непрозрачного экрана.

Дифракция обычно наблюдается, если размеры отверстия или препятствия одного порядка с длиной волны.

При расчетах дифракционных явлений пользуются особым приемом, который предложил Френель, называемый принципом Гюйгенса – Френеля и являющийся развитием принципа Гюйгенса.

Принцип Гюйгенса формулируется так: каждая точка волновой поверхности световых волн является источником вторичных волн. Огибающая поверхность вторичных волн будет новым положением волновой поверхности.

Принцип Гюйгенса решает задачу о распространении волнового фронта, но не решает задачу об интенсивности волн, которые идут в различных направлениях от источника.

Принцип Гюйгенса-Френеля рассматривает интенсивность результирующей волны как результат интерференции вторичных волн, являющихся когерентными, поскольку зарождаются на одном и том же фронте волны.

α 1
α 2
R

Рис . 3.5.2.

Интерференция вторичных волн, по Френелю, происходит следующим образом: пусть из точки S распространяется сферическая волна радиуса R . Выберем на этой поверхности элементарные площадки dS одинакового размера. Все они являются когерентными источниками и нормаль к каждой из них образует различные углы a с лучом, идущим в точку B перед фронтом волны.

Рис . 3.5.3.

Для упрощения расчета интенсивности света в точке B Френель предложил метод, получивший название метода зон Френеля.

Разобьем весь фронт волны на зоны, расстояние от которых до точки B отличается на . Опишем их из точки B , как из центра, окружностями с радиусами

.

Рис . 3.5.4.

Площади зон можно считать одинаковыми, а значения амплитуд световой волны, приходящей в точку B от каждой последующей зоны, постепенно убывают. Ясно, что от двух соседних зон волны приходят в точку B в противофазе.

Метод зон Френеля позволяет объяснить различные случаи дифракции. Рассмотрим некоторые из них, а именно:

дифракцию Френеля или дифракцию в сходящихся лучах, когда на отверстие или препятствие падает сферический фронт волны, и

дифракцию Фраунгофера , или дифракцию в параллельных лучах – на отверстие падает плоский фронт волны.



Примером первого вида дифракции (дифракции Френеля) может быть дифракция на круглом отверстии.

Если в отверстии умещается четное число зон Френеля, то волны приходящие в точку B от соседних зон гасят друг друга, и в точке B будет наблюдаться минимум освещенности. Если в отверстии умещается нечетное число зон, то одна из зон останется нескомпенсированной и в точке B наблюдается максимум интенсивности света. При смещении на экране в различных направлениях от точки B отверстие будет вырезать то четное, то нечетное число зон Френеля. Благодаря этому на экране мы увидим дифракционную картину от круглого отверстия в виде светлых и темных колец.

Примером второго вида дифракции (дифракции Фраунгофера) является дифракция параллельных лучей на одной щели. Щелью называют длинное и узкое отверстие в непрозрачном экране со строго параллельными краями, ширина которого значительно меньше длины.

Рис. 3.5.5.

Свет падает параллельным пучком перпендикулярно ще­ли, так что колебания всех точек щели совершаются в одинаковой фазе. Лучи, дифрагирующие под углом j, будут собраны линзой в точке B экрана и интерферируют.

При j = 0 все волны придут в точку О в одинаковой фазе и усилят друг друга; на экране появится светлая полоса – центральный максимум .

Чтобы определить результат интерференции в точке B при j ¹ 0 , разобьем открытый участок волновой поверхности (ширину щели) на ряд зон Френеля. В данном случае они представляют собой узкие полоски, параллельные краям щели. Проведем через точку А плоскость АD , перпендикулярную пучку дифрагирующих лучей. Оптические пути лучей от АD до точки B одинаковы, поэтому разность хода СD крайних лучей равна:

D = а sin j. (3.5.1)

Зоны Френеля делят D на соответствующее число участков. Каждой точке в нечетной зоне Френеля соответствует точка в четной зоне, колебания которой приходят в точку B в противофазе. Следовательно, в точке B , для которой в ширине щели укладывается четное число зон Френеля, волны гасят друг друга и на экране в этом месте будет темная полоса.



Т.о., условием минимума для одной щели будет:

, , (3.5.2)

В тех направлениях, для которых на ширине щели умещается нечетное число зон, будет наблюдаться наибольшая интенсивность света. Т.е., дифракционные максимумы наблюдаются в направлениях, определяемых условием:

, ,… (3.5.3)

k – порядок дифракционного максимума.

Распределение интенсивности света при дифракции на одной щели показано на рис. 3.5.5.

Итак, при освещении щели монохроматическим светом дифракционная картина представляет собой систему максимумов, симметричных относительно середины центрального максимума с быстрым убыванием интенсивности.

В случае освещения щели белым светом центральный максимум будет общим для всех длин волны, поэтому центр дифракционной картины – белая полоса.

Максимумы остальных порядков для разных длин волн уже не совпадают. Благодаря этому максимумы настолько расплывчаты, что сколько-нибудь отчетливого разделения длин волн (спектрального разложения) при помощи одной щели получить нельзя.

Рассмотрим более сложную дифракцию от двух щелей. В точке О по-прежнему будет светлая полоса (лучи от всех щелей приходят в одинаковой фазе).

В точке B на дифракционную картину от одной щели будет накладываться интерференция лучей, идущих от соответственных точек двух щелей. Минимумы будут на прежних местах, ибо те направления, по которым ни одна щель не посылает света, не получает его и при двух щелях.

Рис. 3.5.6.

Кроме этих минимумов возникают дополнительные минимумы в тех направлениях, в которых свет, посылаемый каждой из щелей, взаимно уничтожается. Из рис. 3.5.6 видно, что разность хода лучей D, идущих от соответствующих точек щелей, равна

. (3.5.4)

Дополнительные минимумы поэтому определяются условием:

; (3.5.5)

Наоборот, в направлениях, где

, (3.5.6)

наблюдаются максимумы.

Из рис. 3.5.6 видно, что между двумя главными максимумами располагается один дополнительный минимум.

Итак, рассмотрение дифракции на двух щелях показывает, что в этом случае максимумы становятся более узкими и интенсивными.

Увеличение числа щелей делает это явление еще более отчетливым; интенсивность главных максимумов растет, а интенсивность побочных – падает.

К= -2
К= -1
К= 0
К= 1
Систему большого числа параллельных щелей называют дифракционной решеткой .

Рис. 3.5.7.

Простейшая дифракционная решетка – это стеклянная пластинка, на которой с помощью делительной машины нанесены параллельные штрихи, непрозрачные для света.

Дифракционная картина от монохроматического света, прошедшего дифракционную решетку, наблюдается в фокальной плоскости линзы и представляет собой ряд светлых узких полос убывающей интенсивности, расположенных по обе стороны от центрального максимума k = 0 и разделенных широкими темными промежутками.

В случае если решетка освещена белым светом, лучи с различной длиной волны собираются в разных местах экрана. Поэтому центральный максимум имеет вид белой полосы, а остальные представляют собой окрашенные полоски, называемые дифракционными максимумами.

Рис. 3.5.8.

В пределах каждого спектра окраска меняется от фиолетовой до красной. По мере увеличения порядка спектра последний становится шире, но интенсивность его уменьшается.

Соотношение, определяющее положения главных максимумов

, (3.5.7)

где d – постоянная решетки, – порядок максимума (спектра), называется формулой дифракционной решетки .

Эта формула позволяет определить длину световой волны по известному периоду решетки d , порядку спектра и экспериментальному углу j . Следовательно, с помощью дифракционной решетки можно разлагать свет на составные части и определять состав исследуемого излучения (определять длину волны и интенсивность всех его компонентов). Применяемые для этого приборы называются дифракционными спектрографами.

Описание оборудования

Приборы и принадлежности : осветитель, дифракционная решетка, экран с миллиметровым масштабом, измерительная линейка.

Рис. 3.5.9.

Для определения длины волны света с помощью дифракционной решетки на специальной рейке укрепляется решетка P и щель; штрихи решетки и щель располагаются параллельно. Щель освещается источником S . Перпендикулярно к оси рейки укрепляется миллиметровая линейка AB с подвижным указателем. Щель рассматривается через решетку глазом. На линейку проектируется изображение главных максимумов. На рис. 8 L – расстояние от дифракционной решетки до экрана, х расстояние между серединами полос одного и того же цвета для спектров первого и второго порядка.

Порядок работы

1. Включить осветитель в сеть.

2. Установить экран на заданном расстоянии L от дифракционной решетки.

3. Замерить расстояние x между полосами заданного цвета в спектре первого порядка x 1 и второго порядка x 2 . Проделать аналогичные измерения и вычисления для другого заданного цвета.

Обработка результатов

Для определения длины волны l по формуле (3.5.7)

необходимо учесть, что поскольку L >> х , то и тогда

и , (3.5.8)

где k – порядок спектра, а постоянная решетки d = 0,01 мм. Вычислить среднее значение длины волны каждого цвета из двух значений, полученных из спектров первого и второго порядков. Сравнить полученные результаты с табличными значениями.

Контрольные вопросы

1. Что такое дифракция света?

2. В чем состоит метод Гюйгенса – Френеля и что такое зоны Френеля?

3. Как происходит дифракция в сходящихся лучах?

4. Как происходит дифракция в параллельных лучах (на одной щели)?

5. Почему нулевой максимум имеет наибольшую яркость? Почему он белый (при освещении белым светом)?

6. Как происходит дифракция в параллельных лучах на двух щелях?

7. Что такое дифракционная решетка и постоянная дифракционной решетки?

8. Какова причина возникновения дисперсии (спектра) света при использовании дифракционной решетки?

9. Выведите рабочую формулу.

Литература

1. Савельев И.В. Курс общей физики. Т.2.Учеб. пособие для студентов втузов. – М.: КНОРУС, 2009, 576 с.

2. Трофимова Т.И. Курс физики. Учеб. пособ. для вузов.- 15-е изд., стереотип. – М.: Издательский центр «Академия», 2007. – 560 с.

3. Детлаф А.А., Яворский Б.М. Курс физики. Учеб пособие для втузов. – М: Высш. Шк., 1989. – 608 с.

ЛАБОРАТОРНАЯ РАБОТА № 3.6

ИЗУЧЕНИЕ ПОЛЯРИЗАЦИИ СВЕТА

Цель работы: экспериментальная проверка закона Малюса.

Теоретические положения

Поляризация света

Как известно, свет представляет собой электромагнитные волны. Векторы напряженности электрического и магнитного поля ( и ) в каждый момент времени взаимно перпендикулярны и лежат в плоскости, перпендикулярной к направлению распространения волны (рис. 3.6.1).

Рис. 3.6.1.

Обычные источники света являются совокупностью огромного числа быстро высвечивающихся, за время около 10 -7 – 10 -8 секунд, элементарных источников (атомов и молекул), каждый из которых испускает волны с определенной ориентацией векторов и . Но элементарные источники испускают свет совершенно независимо друг от друга с разными фазами и с разной ориентацией векторов и .

Световая волна с различной ориентацией , а, следовательно, и , называетсяестественным светом .

Векторы и в каждой точке волны пропорциональны по величине друг другу, поэтому состояние световой волны можно характеризовать значением одного из этих векторов, а именно .

Последнее целесообразно, поскольку именно вектор определяет фотоэлектрическое, фотографическое, зрительное и т. д. действия света.

Рис. 3.6.2.

В естественном луче колебания вектора беспорядочно меняют направления, оставаясь в плоскости, перпендикулярной лучу (рис. 3.6.2 а ).

Если какое – либо направление колебаний является преимущественным, то свет называется частично-поляризованным (рис. 3.6.2 б ).

Если колебания вектора могут совершаться лишь в одном определенном направлении в пространстве, то свет называется плоскополяризованным (рис. 3.6.2 в ).

Если же в плоскополяризованном луче колебания вектора совершаются так, что его конец описывает круг, то свет называется поляризованным по кругу (рис. 3.6.2 г ).

В плоскополяризованном луче плоскость колебаний вектора называется плоскостью колебаний.

Плоскость, проходящая через луч и вектор , называется плоскостью поляризации.

Лабораторная работа №6

Определение длины световой волны

Цель работы : определить длину световой волны с помощью дифракционной решетки.

Оборудование:

    дифракционная решетка с указанным на ней периодом;

    измерительная установка;

    полупроводниковый лазер (лазерная указка).

Ход работы

В работе для определения длины световой волны используется дифракционная решетка с периодом (период указан на решетке). Она является основной частью измерительной установки, показанной на рисунке 1.

Перед началом лабораторной работы установите на скамью экран так, чтобы при включении лазера кнопкой красная точка совпала с нулевым делением шкалы экрана.

Установите в держатель рамку с дифракционной решеткой и включите лазер. На экране образуется картина максимумов и минимумов, идущих от разных щелей решетки в одном направлении. Эта картина представляет серию ярких красных точек, симметрично расходящихся от центрального пятна – нулевого максимума. Меняя дифракционные решетки, наблюдайте, как меняется дифракционная картина в зависимости от числа штрихов на миллиметр.

к ) точно совпадал с целым миллиметровым делением шкалы экрана, и измерьте расстояние b от него до центрального максимума. Определите расстояние а по линейке на скамье от экрана до решетки.

Длина волны определяется по формуле:
,

Где: d - период решетки; к - порядок спектра;

- угол, под которым наблюдаются максимум света соответствующего цвета;

Поскольку углы, под которыми наблюдается максимумы 1-го и 2-го порядков, не превышают 5 0 , можно вместо синусов углов использовать их тангенсы.

Из рисунка 2 видно, что
.

Расстояние отсчитывают по линейке от решетки до экрана, расстояние b – по шкале экрана от щели до выбранной линии спектра.

О

кончательная формула дня определения длины волны имеет вид:


Указания к работе

    Подготовьте бланк отчета с таблицей для записей результатов измерений и вычислений.

    Соберите измерительную установку, установите экран на произвольном расстоянии от решетки.

    После наблюдения качественной картины серии максимумов переместите движок с решеткой по пазу скамьи так, чтобы какой либо максимум (запишите его номер к ) точно совпадал с целым миллиметровым делением шкалы экрана, и измерьте расстояние b от него до центрального максимума.

    Определите положение середин цветных полос в спектрах 1-го порядков.

    Данные занесите в таблицу.

Цвет полос

b слева, м

b среднее,

    По данным измерений вычислите длины волн

    Сравните полученные результаты с табличным значением длины волны видимой части спектра.

    Проведите опыт с другой дифракционной решеткой и сравните полученные результаты между собой и табличными.

Во избежание повреждения глаз категорически запрещается направлять луч лазера на лицо человека..

Контрольный вопрос:

Чем отличается дифракционный спектр от дисперсионного.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то