Химические синапсы. Строение химических синапсов

Московский Психолого-социальный Институт (МПСИ)

Реферат по Анатомии ЦНС на тему:

СИНАПСЫ (строение, структура, функции).

Студент 1 курса Психологического факультета,

группа 21/1-01 Логачёв А.Ю.

Преподаватель:

Холодова Марина Владимировна.

2001 год.

План работы:

1.Пролог.

2.Физиология нейрона и его строение.

3.Структура и функции синапса.

4.Химический синапс.

5.Выделение медиатора.

6.Химические медиаторы и их виды.

7.Эпилог.

8.Список литературы.

ПРОЛОГ:

Наше тело — один большой часовой механизм.

Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм — тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма.

Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы — регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека — все это, в сущности, основано на взаимодействии клеток между собой.

Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения.

ФИЗИОЛОГИЯ НЕЙРОНА И ЕГО СТРОЕНИЕ:

Простейшая реакция нервной системы на внешний раздражитель — это рефлекс.

Прежде всего, рассмотрим строение и физиологию структурной элементарной единицы нервной ткани животных и человека — нейрона. Функциональные и основные свойства нейрона определяются его способностью к возбуждению и самовозбуждению.

Передача возбуждения осуществляется по отросткам нейрона — аксонам и дендритам.

Аксоны — более длинные и широкие отростки. Они обладают рядом специфических свойств: изолированным проведением возбуждения и двусторонней проводимостью.

Нервные клетки способны не только воспринимать и перерабатывать внешнее возбуждение, но и самопроизвольно выдавать импульсы, не вызванные внешним раздражением (самовозбуждение).

В ответ на раздражение, нейрон отвечает импульсом активности — потенциалом действия, частота генерации которых колеблется от 50-60 импульсов в секунду (для мотонейронов), до 600-800 импульсов в секунду (для вставочных нейронов головного мозга). Аксон заканчивается множеством тоненьких веточек, которые называются терминалями.

С терминалей импульс переходит на другие клетки, непосредственно на их тела или чаще на их отростки дендриты. Количество терминалей у аксона, может достигать до одной тысячи, которые оканчиваются в разных клетках. С другой стороны, типичный нейрон позвоночного имеет от 1000 до 10000 терминалей от других клеток.

Дендриты — более короткие и многочисленные отростки нейронов. Они воспринимают возбуждение от соседних нейронов и проводят его к телу клетки.

Различают мякотные и безмякотные нервные клетки и волокна.

Мякотные волокна — входят в состав чувствительных и двигательных нервов скелетной мускулатуры и органов чувств Они покрыты липидной миелиновой оболочкой.

Мякотные волокна более «быстродействующие»: в таких волокнах диаметром 1-3,5 микромиллиметра, возбуждение распространяется со скоростью 3-18 м/с. Это объясняется тем, что проведение импульсов по миелинизированному нерву происходит скачкообразно.

При этом потенциал действия «перескакивает» через участок нерва, покрытый миелином и в месте перехвата Ранвье (оголенный участок нерва), переходит на оболочку осевого цилиндра нервного волокна. Миелиновая оболочка является хорошим изолятором и исключает передачу возбуждения на соединение, параллельно идущие нервные волокна.

Безмякотные волокна — составляют основную часть симпатических нервов.

Они не имеют миелиновой оболочки и отделены друг от друга клетками нейроглии.

В безмякотных волокнах роль изоляторов выполняют клетки нейроглии (нервной опорной ткани). Швановские клетки — одна из разновидностей глиальных клеток. Помимо внутренних нейронов, воспринимающих и преобразующих импульсы, поступающие от других нейронов, существуют нейроны, воспринимающие воздействия непосредственно из окружающей среды — это рецепторы, а так же нейроны, непосредственно воздействующие на исполнительные органыэффекторы, например, на мышцы или железы.

Если нейрон воздействует на мышцу, его называют моторным нейроном или мотонейроном. Среди нейрорецепторов различают 5 типов клеток, в зависимости от вида возбудителя:

фоторецепторы, которые возбуждаются под воздействием света и обеспечивают работу органов зрения,

механорецепторы, те рецепторы, которые реагируют на механические воздействия.

Они располагаются в органах слуха, равновесия. Осязательные клетки также являются механорецепторами. Некоторые механорецепторы располагаются в мышцах и измеряют степень их растяжения.

хеморецепторы — избирательно реагируют на присутствие или изменение концентрации различных химических веществ, на них основана работа органов обоняния и вкуса,

терморецепторы, реагируют на изменение температуры либо на ее уровень — холодовые и тепловые рецепторы,

электрорецепторы реагируют на токовые импульсы, и имеются у некоторых рыб, амфибий и млекопитающих, например, у утконоса.

Исходя из выше сказанного, хотелось бы отметить, что долгое время среди биологов, изучавших нервную систему, существовало мнение, что нервные клетки образуют длинные сложные сети, непрерывно переходящие одна в другую.

Однако в 1875 году, итальянский ученый, профессор гистологии университета в Павии, придумал новый способ окраски клеток — серебрение. При серебрении одной из тысяч лежащих рядом клеток окрашивается только она — единственная, но зато полностью, со всеми своими отростками.

Метод Гольджи сильно помог изучению строения нервных клеток. Его использование показало, что, не смотря на то, что клетки в головном мозгу расположены чрезвычайно близко друг к другу, и их отростки перепутаны, все же каждая клетка четко отделяется. То есть мозг, как и другие ткани, состоит из отдельных, не объединенных в общую сеть клеток. Этот вывод был сделан испанским гистологом С.

Рамон-и-Кахалем, который тем самым распространил клеточную теорию на нервную систему. Отказ от представления об объединенной сети, означал, что в нервной системе импульс переходит с клетки на клетку не через прямой электрический контакт, а через разрыв.

Когда в биологии стал использоваться электронный микроскоп, который был изобретен в 1931 году М. Кноллем и Э. Руска, эти представления о наличии разрыва получили прямое подтверждение.

СТРУКТУРА И ФУНКЦИИ СИНАПСА:

Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия.

Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования — синапы (от греч.

«Synapsis» -соединение, связь). Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М.

Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса. Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

Различные синаптические контакты отличаются друг от друга.

Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс — представляет собой сложное структурное образование, состоящее из пресинаптической мембраны (чаще всего это концевое разветвление аксона), постсинаптической мембраны (чаще всего это участок мембраны тела или дендрита другого нейрона), а так же синаптической щели.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону.

Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциалов

нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.

Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи.

В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи — это так называемые смешанные синапсы.

Синапс: строение, функции

Синапс (греч. synapsis - объединение) обеспечивает однонаправленную передачу нервных импульсов. Синапсы являются участками функционального контакта между нейронами или между нейронами и другими эффекторными клетками (например, мышечными и железистыми).

Функция синапса состоит в превращении электрического сигнала (импульса), передаваемого пресинаптической клеткой, в химический сигнал, который воздействует на другую клетку, известную как постсинаптическая клетка.

Большинство синапсов передают информацию, выделяя нейромедиаторы в ходе процесса распространения сигнала.

Нейромедиаторы - это химические соединения, которые, связываясь с рецепторным белком, открывают или закрывают ионные каналы либо запускают каскады второго посредника. Нейромодуляторы представляют собой химические посредники, которые напрямую не действуют на синапсы, но изменяют (модифицируют) чувствительность нейрона к синаптической стимуляции или к синаптическому торможению.

Некоторые нейромодуляторы являются нейропептидами или стероидами и вырабатываются в нервной ткани, другие- циркулирующими в крови стероидами. В состав самого синапса входят терминаль аксона (пресинаптическая терминаль), приносящая сигнал, участок на поверхности другой клетки, в котором генерируется новый сигнал (постсинаптическая терминаль), и узкое межклеточное пространство - сина птическая щель.

Если аксон оканчивается на клеточном теле , это - аксосоматический синапс, если он оканчивается на дендрите, то такой синапс известен как аксодендритический, и если он образует синапс на аксоне - это аксоаксональный синапс.

Большая часть синапсов - химические синапсы, поскольку в них используются химические посредники, однако отдельные синапсы передают ионные сигналы через щелевые соединения, которые пронизывают пре- и постсинаптическую мембраны, тем самым обеспечивая прямое проведение нейронных сигналов.

Такие контакты известны как электрические синапсы.
Пресинаптическая терминаль всегда содержит синаптические пузырьки с нейромедиаторами и многочисленные митохондрии.

Нейромедиаторы обычно синтезируются в клеточном теле; далее они запасаются в пузырьках в пресинаптической части синапса. В ходе передачи нервного импульса они выделяются в синаптическую щель посредством процесса, известного как экзоцитоз.

5. Механизм передачи информации в синапсах

Эндоцитоз способствует возвращению избыточной мембраны, которая накапливается в пресинаптической части в результате экзоцитоза синаптических пузырьков.

Возвращенная мембрана сливается с агранулярной эндоплазматической сетью (аЭПС) пресинаптического компартмента и повторно используется для образования новых синаптических пузырьков.

Некоторые нейромедиаторы синтезируются в пресинаптическом компартменте при использовании ферментов и предшественников, которые доставляются механизмом аксонального транспорта.

Первыми описанными нейромедиаторами были ацетилхолин и норадреналин. Аксонная терминаль, выделяющая норадреналин, показана на рисунке.

Большая часть нейромедиаторов являются аминами, аминокислотами или мелкими пептидами (нейропептиды). Действием нейромедиаторов могут обладать и некоторые неорганические вещества, такие, как оксид азота. Отдельные пептиды, играющие роль нейромедиаторов, используются в других участках организма, например в качестве гормонов в пищеварительном тракте.

Нейропептиды очень важны в регуляции ощущений и побуждений, таких, как боль, удовольствие, голод, жажда и половое влечение.

Последовательность явлений при передаче сигнала в химическом синапсе

Явления, происходящие во время передачи сигнала в химическом синапсе, проиллюстрированы на рисунке.

Нервные импульсы, быстро (в течение миллисекунд) пробегающие по клеточной мембране, вызывают взрывообразную электрическую активность (деполяризацию), которая распространяется по мембране клетки.

Такие импульсы на короткое время открывают кальциевые каналы в пресинаптической области, обеспечивая приток кальция, который запускает экзоцитоз синаптических пузырьков.

В участках экзопитоза выделяются нейромедиаторы , которые реагируют с рецепторами, расположенными на постсинаптическом участке, вызывая транзиторную электрическую активность (деполяризацию) постсинаптической мембраны.

Такие синапсы известны как возбуждающие, поскольку их активность способствует возникновению импульсов в постсинаптической клеточной мембране. В некоторых синапсах взаимодействие нейромедиатор - рецептор дает противоположный эффект - возникает гиперполяризация, причем передача нервного импульса отсутствует. Эти синапсы известны как тормозные. Таким образом, синапсы могут либо усиливать, либо угнетать передачу импульсов, тем самым они способны регулировать нервную активность.

После использования нейромедиаторы быстро удаляются вследствие ферментного разрушения, диффузии или эндоцитоза, опосредованного специфическими рецепторами на пресинаптической мембране. Такое удаление нейромедиаторов имеет важное функциональное значение, поскольку оно предотвращает нежелательную продолжительную стимуляцию постсинаптического нейрона.

Учебное видео — строение синапса

  1. Тело нервной клетки — нейрона: строение, гистология
  2. Дендриты нервных клеток: строение, гистология
  3. Аксоны нервных клеток: строение, гистология
  4. Мембранные потенциалы нервных клеток.

    Физиология

  5. Синапс: строение, функции
  6. Глиальные клетки: олигодендроциты, шванновские клетки, астроциты, клетки эпендимы
  7. Микроглия: строение, гистология
  8. Центральная нервная система (ЦНС): строение, гистология
  9. Гистология мозговых оболочек. Строение
  10. Гематоэнцефалический барьер: строение, гистология

Строение синапса

Рассмотрим строение синапса на примере аксо- соматического. Синапс состоит из трех частей: преси- наптического окончания, синаптической щели и пост- синаптической мембраны (рис.

9).
Пресинаптическое окончание (синаптическая бляшка) представляет собой расширенную часть тер- минали аксона. Синаптическая щель - это пространство между двумя контактирующими нейронами. Диаметр синаптической щели составляет 10 - 20 нм. Мембрана пресинаптического окончания, обращенная к синаптической щели, называется пресинаптической мембраной. Третья часть синапса - постсинаптичес- кая мембрана, которая расположена напротив пресинаптической мембраны.

Пресинаптическое окончание заполнено пузырьками (везикулами) и митохондриями. В везикулах находятся биологически активные вещества - медиаторы. Медиаторы синтезируются в соме и по микротрубочкам транспортируются в пресинаптическое окончание.

Наиболее часто в качестве медиатора выступают адреналин, норадреналин, ацетилхолин, серотонин, гамма-аминомасляная кислота (ГАМК), глицин и другие. Обычно синапс содержит один из медиаторов в большем количестве по сравнению с другими медиаторами. По типу медиатора принято обозначать синапсы: адреноэргические, холинэргические, серото- нинэргические и др.
В состав постсинаптической мембраны входят особые белковые молекулы - рецепторы, которые могут присоединять молекулы медиаторов.

Синаптическая щель заполнена межклеточной жидкостью, в которой находятся ферменты, способствующие разрушению медиаторов.
На одном постсинаптическом нейроне может находиться до 20000 синапсов, часть которых являются возбудительными, а часть - тормозными.
Помимо химических синапсов, в которых при взаимодействии нейронов участвуют медиаторы, в нервной системе встречаются электрические синапсы.

В электрических синапсах взаимодействие двух нейронов осуществляется посредством биотоков.

Химический синапс

ПД нервного волокна (ПД - потенциал действия)

кая мембрана рецепторы
Рис.

9. Схема строения синапса.

ральной нервной системе преобладают химические синапсы.
В некоторых межнейронных синапсах электрическая и химическая передача осуществляется одновременно - это смешанный тип синапсов.

Влияние возбудительных и тормозных синапсов на возбудимость постсинаптического нейрона суммируется, и эффект зависит от места расположения синапса. Чем ближе синапсы расположены к аксональному холмику, тем они эффективнее.

Напротив, чем дальше расположены синапсы от аксонального холмика (например, на окончании дендритов), тем они менее эффективны. Таким образом, синапсы, расположенные на соме и аксональном холмике, оказывают влияние на возбудимость нейрона быстро и эффективно, а влияние удаленных синапсов медленно и плавно.

Ампмщ iipinl системы
Нейронные сети
Благодаря синаптическим связям нейроны объединены в функциональные единицы - нейронные сети. Нейронные сети могут быть образованы нейронами, расположенными на небольшом расстоянии.

Такую нейронную сеть называют локальной. Кроме того, в сеть могут быть объединены нейроны, удаленные друг от друга, из разных областей мозга. Самый высокий уровень организации связей нейронов отражает соединение нескольких областей центральной нервной системы.

Такую нервную сеть называют путем, или системой. Различают нисходящие и восходящие пути. По восходящим путям информация передается от нижележащих областей мозга к вышележащим (например, от спинного мозга к коре полушарий большого мозга). Нисходящие пути связывают кору больших полушарий мозга со спинным мозгом.
Самые сложные сети называются распределительными системами. Они образуются нейронами разных отделов мозга, управляющих поведением, в которых участвует организм как единое целое.

Некоторые нервные сети обеспечивают конвергенцию (схождение) импульсов на ограниченном количестве нейронов. Нервные сети могут быть построены также по типу дивергенции (расхождение). Такие сети обусловливают передачу информации на значительные расстояния.

Кроме того, нервные сети обеспечивают интеграцию (суммирование или обобщение) различного рода информации (рис. 10).

Химические синапсы можно классифицировать по их место­положению и принадлежности соответствующим структурам: пе­риферические (нервно-мышечные, нейросекреторные, рецеп-торно-нейрональные); центральные (аксосоматические, аксоден-Дритные, аксоаксональные, соматодендритные, соматосоматиче-ские); по знаку шс действия - возбуждающие и тормозящие; по медиатору, который осуществляет передачу, - холинергичес-кие, адренергические, серотонинергические, глицинергические и т.д.

Синапс состоит из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели. Особенностью постсинаптической мембраны является на­личие в ней специальных рецепторов, чувствительных к опреде­ленному медиатору, и наличие хемозависимых ионных каналов. Возбуждение передается с помощью медиаторов (посредников). Медиаторы - это химические вещества, которые в зависимости от их природы делятся на следующие группы: моноамины (аце-тилхолин, дофамин, норадреналин, серотонин), аминокислоты (гамма-аминомасляная кислота - ГАМК, глутаминовая кислота, глицин и др.) и нейропептиды (вещество Р, эндорфины, нейро-тензин, ангиотензин, вазопрессин, соматостатин и др.). Медиа­тор находится в пузырьках пресинаптического утолщения, куда он может поступать либо из центральной области нейрона с по­мощью аксонального транспорта, либо за счет обратного захвата медиатора из синаптической щели. Он может также синтезиро­ваться в синаптических терминалях из продуктов его расщепления.

Когда к окончанию аксона приходит ПД и пресинаптическая мембрана деполяризуется, ионы кальция начинают поступать из внеклеточной жидкости внутрь нервного окончания (рис. 8). Кальций активирует перемещение синаптических пузырьков к пресинаптической мембране, где они разрушаются с выходом медиатора в синаптическую щель. В возбуждающих синапсах медиатор диффундирует в щели и связывается с рецепторами постсинаптической мембраны, что приводит к открытию кана­лов для ионов натрия, а следовательно, к ее деполяризации - возникновению возбуждающего постсинаптического потенциала (ВПСП). Между деполяризованной мембраной и соседними с ней участками возникают местные токи. Если они деполяризуют мембрану до критического уровня, то в ней возникает потенциал действия. В тормозных синапсах медиатор (например, глицин) аналогичным образом взаимодействует с рецепторами постси­наптической мембраны, но открывает в ней калиевые и/или хлорные каналы, что вызывает переход ионов по концентраци­онному градиенту: калия из клетки, а хлора - внутрь клетки. Это приводит к гиперполяризации постсинаптической мембраны - возникновению тормозного постсинаптического потенциала (ТПСП).


Один и тот же медиатор может связываться не с одним, а с несколькими различными рецепторами. Так, ацетилхолин в нервно-мышечных синапсах скелетных мышц взаимодействует с Н-холинорецепторами, которые открывают каналы для натрия, что вызывает ВПСП, а в вагосердечных синапсах он действует на М-холинорецепторы, открывающие каналы для ионов калия (ге­нерируется ТПСП). Следовательно, возбуждающий или тормоз­ной характер действия медиатора определяется свойствами постсинаптической мембраны (видом рецептора), а не самого ме­диатора.

Рис. 8. Нервно-мышечный синапс

К окончанию нервного волокна приходит потенциал действия (ПД); си-наптические пузырьки высвобождают медиатор (ацетилхолин) в синапти-ческую щель; ацетилхолин (АХ) связывается с рецепторами постсинапти-ческой мембраны; потенциал постсинаптической мембраны снижается от минус 85 до минус 10 мВ (возникает ВПСП). Под действием тока, иду­щего от деполяризованного участка к недеполяризованным, возникает потенциал действия на мембране мышечного волокна

Кроме нейромедиаторов, пресинаптические окончания выде­ляют вещества, которые не участвуют непосредственно в переда­че сигнала и играют роль нейромодуляторов эффектов сигнала. Модуляция осуществляется влиянием либо на выделение медиа­тора, либо на его связывание рецепторами постсинаптического нейрона, а также на реакцию этого нейрона на медиаторы. Функцию классических медиаторов выполняют амины и аминокисло­ты, функцию нейромодуляторов - нейропептиды. Медиаторы синтезируются в основном в терминалях аксона, нейропептиды образуются в теле нейрона путем синтеза белков, от которых они отщепляются под влиянием протеаз.

Синапсы с химической передачей возбуждения обладают ря­дом общих свойств: возбуждение через синапсы проводится толь­ко в одном направлении, что обусловлено строением синапса (ме­диатор выделяется только из пресинаптической мембраны и вза­имодействует с рецепторами постсинаптической мембраны); пе­редача возбуждения через синапсы осуществляется медленнее, чем по нервному волокну (синаптическая задержка); синапсы об­ладают низкой лабильностью и высокой утомляемостью, а также высокой чувствительностью к химическим (в том числе и к фармакологическим) веществам; в синапсах происходит трансфор­мация ритма возбуждения.

Синaпс – специализированный контакт между нервными клетками (или нервными и другими возбудимыми клетками), обеспечивающий передачу возбуждения с сохранением его информационной значимости. С помощью синапсов нервные клетки объединяются в нервные сети, которые осуществляют обработку информации. Взаимосвязь между нервной системой и периферическими органами и тканями также осуществляется при помощи синапсов.

Классификация синапсов

По морфологическому принципу синапсы подразделяют на:

• нейро-мышечные (аксон нейрона контактирует с мышечной клеткой);

• нейро-секреторные (аксон нейрона контактирует с секреторной клеткой);

• нейро-нейрональные (аксон нейрона контактирует с другим нейроном):

• аксо-соматические (с телом другого нейрона),
• аксо-аксональные (с аксоном другого нейрона),
• аксо-дендритические (с дендритом другого нейрон).

По способу передачи возбуждения синапсы подразделяют на:

• электрические (возбуждение передается при помощи электрического тока);

• химические (возбуждение передается при помощи химического вещества):

• адренергические (возбуждение передается при помощи норадреналина),
• холинергические (возбуждение передается при помощи ацетилхолина),
• пептидергические, NO -ергические, пуринергические и т. п.

По физиологическому эффекту синапсы подразделяют на:

• возбуждающие (деполяризуют постсинаптическую мембрану и вызывают возбуждение постсинаптической клетки);

• тормозные (гиперполяризуют постсинаптическую мембрану и вызывают торможение постсинаптической клетки).

Ультраструктура синапсов

Все синапсы имеют общий план строения (рис. 1).

Конечная часть аксона (синаптическое окончание), подходя к иннервируемой клетке, теряет миелиновую оболочку и образует на конце небольшое утолщение (синаптическую бляшку). Ту часть мембраны аксона, которая контактирует с иннервируемой клеткой, называют пресинаптической мембраной. Синаптическая щель – узкое пространство между пресинаптической мембраной и мембраной иннервируемой клетки, которое является непосредственным продолжением межклеточного пространства. Постсинаптическая мембрана – участок мембраны иннервируемой клетки, контактирующий с пресинаптической мембраной через синаптическую щель.

Особенности ультраструктуры электрического синапса (см. рис. 1):

• узкая (около 5 нм) синаптическая щель;
• наличие поперечных канальцев, соединяющих пресинаптическую и постсинаптическую мембрану.

Особенности ультраструктуры химического синапса (см. рис. 1):

• широкая (20–50 нм) синаптическая щель;
• наличие в синаптической бляшке синаптических пузырьков (везикул), заполненных химическим веществом, при помощи которого передается возбуждение;
• в постсинаптической мембране имеются многочисленные хемочувствительные каналы (в возбуждающем синапсе – для Nа+ , в тормозном – для Cl – и К +), но отсутствуют потенциалчувствительные каналы.

Механизм передачи возбуждения в электрическом синапсе

Механизм проведения возбуждения аналогичен механизму проведения возбуждения в нервном волокне. Во время развития ПД происходит реверсия заряда пресинаптической мембраны. Электрический ток, возникающий между пресинаптической и постсинаптической мембраной, раздражает постсинаптическую мембрану и вызывает генерацию в ней ПД (рис. 2).

Этапы и механизмы передачи возбуждения
в возбуждающем химическом синапсе

Передача возбуждения в химическом синапсе – сложный физиологический процесс, протекающий в несколько этапов. На пресинаптической мембране осуществляется трансформация электрического сигнала в химический, который на постсинаптической мембране снова трансформируется в электрический сигнал.

Синтез медиатора

Медиатором (посредником) называют химическое вещество, которое обеспечивает одностороннюю передачу возбуждения в химическом синапсе. Некоторые медиаторы (например, ацетилхолин) синтезируются в цитоплазме синаптического окончания, и там же молекулы медиатора депонируются в синаптических пузырьках. Ферменты, необходимые для синтеза медиатора, образуются в теле нейрона и доставляются в синаптическое окончание путем медленного (1–3 мм/сут) аксонного транспорта. Другие медиаторы (пептиды и др.) синтезируются и упаковываются в везикулы в теле нейрона, готовые синаптические пузырьки доставляются в синаптичекую бляшку за счет быстрого (400 мм/сут) аксонного транспорта. Синтез медиатора и образование синаптических пузырьков осуществляется непрерывно.

Секреция медиатора

Содержимое синаптических пузырьков может выбрасываться в синаптическую щель путем экзоцитоза. При опорожнении одного синаптического пузырька в синаптичекую щель выбрасывается порция (квант) медиатора, которая включает около 10000 молекул.

Для активации экзоцитоза необходимы ионы Са++ . В состоянии покоя уровень Са++ в синаптическом окончании низок и выделения медиатора практически не происходит. Приход в синаптическое окончание возбуждения приводит к деполяризации пресинаптической мембраны и открытию потенциалчувствительных Са++ -каналов. Ионы Са++ поступают в цитоплазму синаптического окончания (рис. 3, А,Б) и активируют опорожнение синаптических пузырьков в синаптическую щель (рис. 3, В).

Взаимодействие медиатора с рецепторами постсинаптической мембраны

Молекулы медиатора диффундируют через синаптическую щель и достигают постсинаптической мембраны, где связываются с рецепторами хемочувствительных Na+ -каналов (рис. 3, Г). Присоединение медиатора к рецептору приводит к открытию Na+ -каналов, через которые в клетку входят ионы Na+ (рис. 3, Д). В результате входа в клетку положительно заряженных ионов происходит локальная деполяризация постсинаптической мембраны, которую называют возбуждающий постсинаптический потенциал (ВПСП) (рис. 3, Е).

Инактивация медиатора

Ферменты, находящиеся в синаптической щели, разрушают молекулы медиатора. В результате происходит закрытие Na+ -каналов и восстановление МП постсинаптической клетки. Некоторые медиаторы (например, адреналин) не разрушаются ферментами, а удаляются из синаптической щели путем быстрого обратного всасывания (пиноцитоза) в синаптическое окончание.

Генерация ПД

В нейро-мышечном синапсе амплитуда единичного ВПСП достаточно велика. Поэтому для генерации ПД в мышечной клетке достаточно прихода одного нервного импульса. Генерация ПД в мышечной клетке происходит в области, окружающей постсинаптическую мембрану.

В нейро-нейрональном синапсе амплитуда ВПСП значительно меньше и недостаточна для того, чтобы деполяризовать мембрану нейрона до КУД. Поэтому для генерации ПД в нервной клетке требуется возникновение нескольких ВПСП. ВПСП, образовавшиеся в результате срабатывания разных синапсов, электротонически распространяются по мембране клетки, суммируются и генерируют образование ПД в области аксонного холмика. Мембрана нейрона в области аксонного холмика обладает низким электрическим сопротивлением и имеет большое количество потенциалчувствительных Na+ -каналов.

Особенности работы тормозного химического синапса

В тормозном химическом синапсе молекулы медиатора, взаимодействуя с рецепторами постсинаптической мембраны, вызывают открытие К+ - и Cl – -хемочувствительных каналов. Вход в клетку Cl– и дополнительная утечка из клетки К+ приводят к гиперполяризации постсинаптической мембраны, которую называют тормозным постсинаптическим потенциалом (ТПСП) . Возникшая гиперполяризация, во-первых, снижает возбудимость клетки. Во-вторых, ТПСП может нейтрализовать возникший в другом месте клетки ВПСП.

Свойства синапсов

Сравнительная характеристика свойств электрических и химических синапсов приведена в табл. 1.

Одностороннее проведение возбуждения в химическом синапсе связано с его функциональной асимметрией: молекулы медиатора выделяются только на пресинаптической мембране, а рецепторы медиатора расположены только на постсинаптической мембране.

Высокая утомляемость химического синапса объясняется истощением запасов медиатора. Утомляемость электрического синапса соответствует утомляемости нервного волокна.

Низкая лабильность химического синапса определяется главным образом периодом рефрактерности хемочувствительных каналов на постсинаптической мембране.

Синаптическая задержка – время от момента возникновения возбуждения в пресинаптической мембране до момента возникновения возбуждения в постсинаптической мембране. Относительно длительное время синаптической задержки в химическом синапсе (0,2–0,7 мс) затрачивается на вход Са++ в синаптическое окончание, экзоцитоз, диффузию медиатора.

Чувствительность синапса к внешним воздействиям определяется характером процессов, протекающих в синапсе при передаче возбуждения. Химические синапсы чувствительны к действию химических веществ, влияющих на синтез и секрецию медиатора, взаимодействие медиатора с рецептором.

Таблица 1.Свойства электрических и химических синапсов

Свойство

Электрические синапсы

Химические синапсы

Проведение возбуждения

двустороннее

одностороннее

Утомляемость

Лабильность

Синаптическая задержка

короткая

Трансформация ритма ПД

не происходит

происходит

Чувствительны к действию

электромагнитных излучений

химических агентов

Медиаторы и модуляторы синаптической передачи

По химической структуре медиаторы подразделяют на:

• моноамины (адреналин, норадреналин, ацетилхолин и др.);
• аминокислоты (гамма-аминомасляная кислота (ГАМК), глутамат, глицин, таурин);
• пептиды (эндорфин, нейротензин, бомбезин, энкефалин и др.);
• прочие медиаторы (NO , АТФ).

Амбивалентность действия медиаторов проявляется в том, что один и тот же медиатор в разных синапсах может оказывать различное действие на эффекторную клетку. Результат действия медиатора на постсинаптическую мембрану зависит от того, какие рецепторы и ионные каналы в ней находятся. Если медиатор открывает в постсинаптической мембране Na+ -каналы, то это приводит к развитию ВПСП, если K+ - или Cl – -каналы, то развивается ТПСП. Вследствие этого термины «возбуждающий медиатор» и «тормозный медиатор» неправомерны; следует говорить лишь о возбуждающих и тормозных синапсах.

В синаптическом окончании наряду с медиатором могут синтезироваться и высвобождаться одно или несколько химических веществ. Эти соединения, действуя на постсинаптичекую мембрану, могут повышать или снижать ее возбудимость. Поскольку сами по себе они не могут вызвать возбуждение постсинаптической мембраны, их называют модуляторами синаптической передачи (нейромодуляторами). Большинство нейромодуляторов представляют собой пептиды.

Структура химического синапса

Схема процесса передачи нервного сигнала в химическом синапсе

Гипотеза пороцитоза

Существуют существенные экспериментальные подтверждения того, что медиатор секретируется в синаптическую щель благодаря синхронной активации гексагональных групп МПВ (см. выше) и присоединенных к ним везикул , что стало основой для формулирования гипотезы пороцитоза (англ. porocytosis ). Эта гипотеза базируется на наблюдении, что присоединенные к МПВ везикулы при получении потенциала действия синхронно сокращаются и при этом секретируют в синаптическую щель каждый раз одинаковое количество медиатора, высвобождая только часть содержимого каждой из шести везикул. Сам по себе термин «пороцитоз» происходит от греческих слов poro (что означает поры) и cytosis (описывает перенос химических субстанций через плазматическую мембрану клетки).

Большинство экспериментальных данных о функционировании моносинаптических межклеточных соединений получены благодаря исследованиям изолированных нервно-мышечных контактов. Как и в межнейронных, в нервно-мышечных синапсах МПВ формируют упорядоченные гексагональные структуры . Каждая из таких гексагональных структур может быть определена как «синаптомер» - то есть структура, которая является элементарной единицей в процессе секреции медиатора. Синаптомер содержит, кроме собственно поровых углублений, протеиновые нитчатые структуры, содержащие линейно упорядоченные везикулы; существование аналогичных структур доказано и для синапсов в центральной нервной системе (ЦНС).

Как было сказано выше, пороцитозный механизм генерирует квант нейромедиатора , но без того, чтобы мембрана индивидуальной везикулы полностью сливалась с пресинаптической мембраной. Малый коэффициент вариации (<3 %) у величин постсинаптических потенциалов является индикатором того, что в единичном синапсе имеются не более 200 синаптомеров , каждый из которых секретирует один квант медиатора в ответ на один потенциал действия . 200 участков высвобождения (то есть синаптомеров, которые высвобождают медиатор), найденные на небольшом мышечном волокне, позволяют рассчитать максимальный квантовый лимит, равный одной области высвобождения на микрометр длины синаптического контакта , это наблюдение исключает возможность существования квантов медиатора, обеспечивающих передачу нервного сигнала, в объеме одной везикулы.

Сравнение гипотез пороцитоза и квантово-везикулярной

Сравнение недавно общепринятой гипотезы КВЭ с гипотезой пороцитоза может быть осуществлено посредством сравнения теоретического коэффициента вариации с опытным, рассчитанным для амплитуд постсинаптических электрических потенциалов, генерируемых в ответ на каждый отдельный выброс медиатора из пресинапса. Если принять, что процесс экзоцитоза проходит в небольшом синапсе, где содержится около 5 000 везикул (50 на каждый микрон длины синапса), постсинаптические потенциалы должны быть сгенерированы 50-ю случайно выбранными везикулами, что даёт теоретический коэффициент вариации 14 %. Эта величина примерно в 5 раз больше, чем коэффициент вариации постсинаптических потенциалов, получаемых в опытах, таким образом, можно утверждать, что процесс экзоцитоза в синапсе не является случайным (не совпадает с распределением Пуассона) - что невозможно, если объяснять его в рамках гипотезы КВЭ, но вполне соответствует гипотезе пороцитоза. Дело в том, что гипотеза пороцитоза предполагает, что все связанные с пресинаптической мембраной везикулы выбрасывают медиатор одновременно; при этом постоянное количество медиатора, выбрасываемого в синаптическую щель в ответ на каждый потенциал действия (об устойчивости свидетельствует малый коэффициент вариации постсинаптических ответов) вполне может быть объяснено высвобождением малого объема медиатора большим количеством везикул - при этом, чем больше везикул, участвующих в процессе, тем меньше становится коэффициент корреляции , хотя это и выглядит с точки зрения математической статистики несколько парадоксально.

Классификация

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

  • периферические
    • нервно-мышечные
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные
    • аксо-дендритические - с дендритами, в том числе аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
    • аксо-соматические - с телами нейронов;
    • аксо-аксональные - между аксонами;
    • дендро-дендритические - между дендритами;

В зависимости от медиатора синапсы разделяются на

  • аминергические, содержащие биогенные амины (например, серотонин, дофамин;
    • в том числе адренергические, содержащие адреналин или норадреналин;
  • холинергические, содержащие ацетилхолин;
  • пуринергические, содержащие пурины;
  • пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия:

  • возбуждающие
  • тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке, то вторые, наопротив, прекращают или предотвращают его появление. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Примечания

Ссылки

  • Савельев А. В. Источники вариаций динамических свойств нервной системы на синаптическом уровне // Искусственный интеллект . - НАН Украины, Донецк, 2006. - № 4. - С. 323-338.

См. также

Синапс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумянейронами или между и получающей сигнал эффекторной клеткой. Служит для передачи между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Структура синапса

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической , образованной булавовидным расширением окончаниемаксона передающей клетки и постсинаптической , представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель - промежуток шириной 10-50нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные .

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче ), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Классификация синапсов

В зависимости от механизма передачи нервного импульса различают

  • химические;
  • электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм)

Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run ), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность составляет около - 0,5 мс.

Так называемый «принцип Дейла» (один - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

История открытия

  • В 1897 году Шеррингтон сформулировал представление о синапсах.
  • За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль.
  • В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
  • В 1933 советский учёный А. В. Кибяков установил роль адреналина в синаптической передаче.
  • 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие ролинорадреналина в синаптической передаче.
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то