Гмо вредны или пользны для человека, список генетически модифицированных продуктов. ГМО: польза или вред, цели создания, применение, исследование безопасности


Существует множество заблуждений относительно опасности использования в пищу генетически модифицированных продуктов. И большинство из этих заблуждений имеет под собой нравственно-этическую и религиозную основу. Долг учёных – разъяснять в доступной для обывателей форме все плюсы и минусы использования генно-модифицированных источников пищевой продукции (далее ГМИ) с целью предотвращения необоснованно отрицательного восприятия достижений генной инженерии и предоставления возможности каждому производить осознанный выбор продуктов питания, необходимых для жизнедеятельности.

Организмы, подвергшиеся генетической трансформации, называются трансгенными. Но не все трансгенные организмы могут стать ГМИ пищевой продукции. Если такие организмы способны к воспроизводству и передаче новой генетической информации, то они являются генно-модифицированными (далее ГМО).

Рассмотрим предпосылки создания ГМО. Увеличение численности населения Земли приводит к потребности в организмах с заданными свойствами: устойчивостью к засухе, холоду, вредителям, проч.; высокой урожайностью; крупными плодами; др. Кроме того, развитие биологической науки и технологий создали условия для реализации этих целей.

Трансгенные растения в зависимости от признаков, контролируемых перенесёнными генами, делятся на:

Устойчивые к гербицидам;
- устойчивые к насекомым-вредителям;
- устойчивые к гербицидам и насекомым вредителям;
- устойчивые к вирусам, бактериальной и грибной инфекции;
- устойчивые к абиотическим факторам (холоду, жаре, засухе, проч);
- растения для пищевой и фармацевтической промышленности;
- растения для очистки почв, вод и т.д.

Выведение организмов, обладающих этими свойствами, возможно с использованием традиционной селекции и генной инженерии.

Традиционная селекция растений в течение длительного периода времени отбирает из поколений растений организмы с желаемыми свойствами и путём их скрещивания усиливает проявление этих свойств.

Генная инженерия, используя технику и технологию современной молекулярной биологии, внедряет в гены участки, отвечающие за те или иные свойства, вызывая тем самым проявление этих свойств у новых поколений растений.

При этом генная инженерия использует следующие основные методики трансформации растений:

использование особых ферментов, способных распознавать участки ДНК, расщеплять их на участки и сшивать в другой последовательности. Данная методика была использована на заре развития генной инженерии;

метод биологической баллистики: внедряемые в ДНК гены наносятся на вольфрамовые или золотые частица, а особые биологические пушки выстреливают этими частицами по направлению к хромосомам – молекулам-мишеням. Сегодня это самая распространённая методика.

Любые продовольственное сырьё или продукт питания можно исследовать на предмет выявления присутствия в них ГМИ. "Для обнаружения специфических участков нуклеиновых кислот используются два основных направления: непосредственное выявление искомой молекулы-мишени с использованием меченых гибридизационных систем и детекция молекул-мишеней после предварительного увеличения их количества".

Какие потенциальные опасности рассматриваются при использовании генно-модифицированных культур? Если допустить бесконтрольное использование трансгенных организмов в хозяйственной деятельности и их распространение природе, то возможны следующие последствия:

Нежелательные гены путём свободного скрещивания будут перенесены в дикорастущие виды, и дикорастущие виды станут терпимыми к гербицидам, вирусам и насекомым, проч. (биологическая опасность использования ГМИ);

Пищевые растения изменят биологическую и пищевую ценность, будут вызывать мутации, аллергии, станут токсичными для животных и человека (пищевая опасность ГМИ).

С целью снижения или исключения потенциального риска для живой природы и здоровья человека от применения ГМИ пищи необходимо осуществлять:

Контроль за генно-инженерной деятельностью, производством, выпуском и реализацией ГМО;

Медико-генетическую, технологическую и медико-биологичес-кую оценку ГМИ;

Мониторинговые мероприятия.

С целью контроля биобезопасности ГМИ производят следующее. Сначала изучают встроенную в ген конструкцию и сравнивают её с заявленной. Потом выясняют, так ли встроенный ген влияет на свойства растения, как заявлено. Обращают особое внимание на перенос генов бесполым и половым путём. Изучают подверженность трансгенных организмов болезням, а так же, что может произойти, если внедрённые гены попадут в другие культуры путём свободного скрещивания, как изменится восприимчивость последних к болезням и вредителям, как генетический продукт повлияет на другие виды растений и животных.

Экспертизу пищевой продукции из ГМИ осуществляют по следующим направлениям.

Последовательно производят медико-генетическую оценку (изучение заявленного внедрённого гена на молекулярном и клеточном уровне и его влияния на растение, другие растения, животных, человека), технологическую оценку (изучение органолептических, потребительских и технологических свойств продукта из ГМИ) и медико-биологическую оценку. По результатам медико-биологической оценки проходят клинические испытания, выдаётся заключение о качестве и безопасности продукции из ГМИ. Когда первая продукция из нового ГМИ была апробирована, производят гигиенический мониторинг, и, если его результаты положительны, то даётся разрешение на широкое применение ГМИ для пищевых целей.

Медико-биологическая оценка включает:

Изучение химического состава,
- оценку биологической ценности и усвояемости на лабораторных животных,
- токсикологические исследования на лабораторных животных (5-6 мес),
- оценка алергенных, мутагенных свойств и воздействия на репродуктивные функции лабораторных животных.

В настоящее время в России прошли полный цикл всех необходимых исследований и разрешены для использования в пищевой промышленности и реализации населению 11 видов пищевой продукции растительного происхождения, полученных с применением трансгенных технологий: 3 линии сои, устойчивые к пестицидам; 3 линии кукурузы, устойчивые к пестицидам; 2 линии кукурузы, устойчивые к вредителям; 2 сорта картофеля, устойчивых к колорадскому жуку, и 1 линия сахарной свеклы, устойчивой к глифосату.

В соответствии с Постановлением главного государственного санитарного врача РФ №149 от 16.09. 2003 г. "О проведении микробиологической и молекулярно-генетической экспертизы генетически модифицированных микроорганизмов, используемых в производстве пищевых продуктов" санитарно-эпидемиологической экспертизе в ГУ НИИ питания РАМН и ГУ НИИЭМ им. Н.Ф. Гамалеи РАМН также подлежит следующая продукция, полученная с использованием генетически модифицированных микроорганизмов.

1. Сыры, полученные с использованием дрожжевых затравок, экспрессирующих рекомбинантный химозин.

2. Пиво, полученное с использованием генетически модифицированных дрожжей.

3. Молочная продукция, полученная с использованием "стар-терных" культур.

4. Копченые колбасы, полученные с использованием "стартер-ных" культур.

5. Пищевые продукты, технология приготовления которых предусматривает использование кисломолочных бактерий-продуцентов ферментов.

6. Пробиотики, содержащие генетически модифицированные штаммы.

В странах ЕС пищевая продукция, содержащая ГМИ, снабжена специальными этикетками. В США специальная маркировка не требуется, если продукция и так признана безопасной.

В России на упаковку наносится информация: Генетически модифицированная продукция, полученная из генетически модифицированных источников, содержит компоненты, полученные из генетически модифицированных источников.

Обязательной маркировке подлежат следующие продукты из ГМИ:

Из сои – концентрат белковый соевый, соевая мука, соевое молоко и т.д.;
- из кукурузы – кукурузная мука, попкорн, кукуруза консервированная и т.д.;
- из картофеля – картофель для непосредственного употребления в пищу, пюре картофельное сухое, картофельные чипсы и т.д.;
- из томатов – томатная паста, пюре, кетчупы и т.д.;
- из сахарной свёклы – меласса, пищевые волокна.

безопасность применения пищевых, технологических и биологически активных добавок

Пища, необходимая для нормального функционирования человеческого организма, состоит из основных пищевых веществ – органических и неорганических соединений, которые требуются для нормального роста, поддержания и восстановления тканей, а также для размножения. Пищевые вещества представлены макронутриентами (белками, жирами, углеводами и макроэлементами) и микронутриентами (витаминами и микроэлементами).

Однако продукты питания, изготавливаемые человеком, кроме уже названных составляющих могут включать чужеродные вещества – загрязнители продовольственного сырья и продуктов питания – уже рассмотренные нами ксенобиотики, а также специально вносимые человеком в пищу вещества – так называемые добавки.

В зависимости от своей природы, свойств и целей использования добавки подразделяются на пищевые, технологические и биологически активные, рассмотрению вопросов безопасного использования которых будет посвящена эта глава.

Пищевые добавки – это непищевые природные, идентичные природным или искусственные (синтетические) вещества, преднамеренно вводимые в пищевое сырьё, полуфабрикаты или готовые продукты с целью увеличения сроков их хранения или придания им заданных свойств.

Пищевые добавки делятся на:

Добавки, обеспечивающие органолептические свойства продуктов – улучшители консистенции, красители, ароматизаторы, вкусовые вещества;

Консерванты – антимикробные средства, антиокислители.

Токсиколого-гигиеническая оценка пищевых добавок, в процессе которой осуществляют всестороннее изучение заявленной пищевой добавки и установление её полной безопасности для потребителя, проходит в четыре этапа.

Проведение предварительной токсиколого-гигиенической оценки. В ходе этого этапа определяют химический состав и свойства пищевой добавки, определяют её назначение, методы обнаружения и утилизации, метаболизм, дают название веществу, разрабатывают технологию получения добавки, в ходе острого эксперимента рассчитывают летальную дозу.

Самый продолжительный этап токсиколого-гигиенической оценки пищевой добавки. Изучают генетическую, репродуктивную, тератогенную, субхроническую и хроническую токсичность пищевой добавки в ходе хронического эксперимента.

Генетическая токсичность вещества – это способность оказывать вредное воздействие на наследственность потребителя, т.е. вызывать нежелательные мутации. Репродуктивная токсичность вещества – это способность оказывать вредное воздействие на мужскую и женскую плодовитость и общую способность к продолжению рода. Тератогенная токсичность вещества – это способность вызывать появление уродств у эмбрионов. Хроническая токсичность вещества – это токсическое действие вещества на организм человека, которое можно выявить после потребления исследуемого вещества в течение 2-х и более лет.

Обнаружение проявления любого из названных видов токсичности у лабораторных животных требует отказа от применения заявленной пищевой добавки. Дальнейшее исследование вещества прекращается за отсутствием необходимости.

На этом этапе обобщаются результаты проведённых исследований и рассчитывают ДСП исследуемого вещества и ПДК пищевой добавки в продуктах. Данные вносятся в гигиенические нормативы.

Заключительный этап предусматривает наблюдение за пищевой добавкой для подтверждения её безопасности, внесение поправок в гигиенические нормативы.

Технологические добавки – это любые вещества или материалы, которые, не являясь пищевыми ингредиентами, преднамеренно используются при переработке сырья и получении пищевой продукции с целью улучшения технологии. В готовой пищевой продукции их должно оставаться как можно меньше – в рамках ПДК.

В пищевом производстве используется широкий спектр технологических добавок на самых разнообразных этапах технологического процесса. Рассмотрим некоторые группы:

Ускорители технологических процессов – ферменты животных, растений, микроорганизмов, синтетические. Во многих случаях нет необходимости удалять их из готового продукта;

Фиксаторы миоглобина – вещества, обеспечивающие стойкий розовый цвет мясным и рыбным изделиям;

Вещества для отбеливания муки, которые по химическим свойствам являются сильные окислители;

Улучшители качества хлеба, среди которых можно выделить: улучшители окислительного действия, повышающие газоудерживающую способность теста; улучшители восстановительного действия, увеличивающие объёмный выход хлеба; модифицированные крахмалы, улучшающие структурно-механические свойства хлеба, и т.д.;

Полирующие средства. Обработка ими карамели и драже препятствует слипанию изделий. Как полирующие средства используются вазелиновое медицинское масло, воски, жиры, парафин, тальк;

Растворители, которые используются для обезжиривания, извлечения из твёрдых тел каких-либо веществ; проч.

Многие вспомогательные материаламы пищевого производства (экстрагенты, адсорбенты, абсорбенты, др.) тоже считаются технологическими добавками. В норме, вспомогательные материалы не должны содержаться в готовых изделиях. После исполнения своего технологического назначения эти материалы выводятся из среды, в которой осуществляется процесс.

Видео: Вы едите ГМО? Узнайте что с вами будет.



Наклейки (знаки) «Без ГМО» (не содержит ГМО) в наши дни являются спутниками органической продукции: вместе с «экологичностью» дизайна упаковки и грамотной рекламой они как бы гарантируют людям здоровые перспективы. Например, в одних лишь Соединенных Штатах уже восьмой год от производителей поданы для сертификации десятки тысяч названий продуктов.

Компании-производители пожелали официального закрепления того факта, что их еда не является генетически модифицированной. Общественные организации вместе с социальными активистами потребовали обязательную маркировку генно-модифицированной продукции.

В России все, что связано с ГМО, сейчас регулируется законодательством. Так, Госдумой был принят закон, который запрещает выращивание в стране генетически модифицированной продукции. Согласно этому документу запрещено использование для посевов (посадок) семян растений, генетическую программу в которых изменили с применением технологий генной инженерии или в которых содержатся генно-инженерные материалы, внесенные искусственным образом.

Что такое ГМО?

Генетически модифицированными организмами (ГМО) могут быть растения, животные или микроорганизмы, генотипы которых были изменены при помощи технологий генной инженерии. Продовольственной и сельскохозяйственной организацией ООН (FAO) рассматривается применение технологий генной инженерии при создании трансгенных видов растений в качестве неотъемлемой части процесса сельскохозяйственного развития. Процесс прямого переноса генов, которые отличаются полезными признаками, является естественным этапом в селекционных работах с животными или растениями. Такие технологии расширяют множество возможностей при создании новых сортов.

Зачем людям ГМО?

Не в одном только в сельском хозяйстве используются генетически модифицированные организмы. Так, например, современная медицина тоже использует ГМО для своих нужд:

  • Участие в процессе разработки вакцин;
  • ГМ-бактерии оказывают помощь в производстве инсулина;
  • Генотерапия уже излечивает множество болезней, участвует в замедлении процессов старения.

Опасности (минусы) ГМО

Многие ученые утверждают, что использование продуктов с ГМО несет такие основные угрозы:

  • Угрозу для организма людей, связанную с аллергическими заболеваниями, нарушениями обмена веществ, с появлением устойчивости желудочной патогенной микрофлоры человека к антибиотикам, а также с канцерогенными и мутагенными эффектами;
  • Угрозу для окружающей среды, связанную с возникновением вегетирующих сорняков, с которыми не просто справиться, загрязнением исследовательских территорий, химическими загрязнениями, уменьшением генетической плазмы и пр;
  • Глобальные риски, связанные с активизацией критических вирусов, а также с экономической безопасностью.

Так, в Канаде, которая является одной из многих центральных стран-производителей ГМО-продукции, аналогичные случаи уже фиксируются. По сообщениям местной прессы, многие канадские фермы стали жертвами «оккупации» генетически модифицированных «суперсорняков», которые возникли по причине ненамеренного скрещивания трех видов ГМО-семян рапса, устойчивого к самым разнообразным гербицидам. После всего этого экспериментирования вышло растение, какое, по утверждению все той же местной прессы, стало более устойчивым к большинству сельскохозяйственных химикатов.

Подобные проблемы могут возникать и в тех случаях, когда происходит переход генов, отвечающих за устойчивость к гербицидам, от культурного растительного мира к прочим дикорастущим растениям. В частности, было подмечено, что при выращивании трансгенной сои могут произойти генетические мутации в сопутствующих растениях (сорняках). Они, кстати, трансформируются и становятся невосприимчивыми к гербицидам.

Не исключается также и возможная передача генов, с помощью которых происходит кодирование выработки белков. А те в свою очередь становятся токсичными для вредителей-насекомых. Сорные травы, которые занимаются вырабатыванием собственных инсектицидов, приобретают колоссальное преимущество в процессе борьбы с вредителями-насекомыми, которые нередко являются естественным ограничителем их роста.

Как создаются ГМО?

На сегодняшний день используются как минимум три направления генной инженерии, которые располагают чем-то общим с набором текста: копированием/вставкой, цензурой и редактированием.

Так, например, в одних видах берутся необходимые для ученых гены — гены интереса - которые в дальнейшем внедряются в подопытные виды растений.

Так, компанией Syngenta был создан Золотой Рис (R), в составе которого был ген с про-витамином «А» кукурузы. А компанией Monsanto были найдены гены, устойчивые к гербицидам RоundUp в бактериях. Причем открытие произошло на территории их предприятия, которое производило эти гербициды, и внедрило их в растения.

Страны, отрицающие ГМО

Маркировку (знак ГМО) ГМ-растений ввели на территории Австралийского Союза, Китая, Израиля, Бразилии, а также отдельных стран Европейского Союза. Тогда как Канада, Соединенные Штаты, Аргентина, ЮАР маркировку ГМ-продукции оставляют на совести производителей. Зато пальма первенства в биотехнологическом растениеводстве на европейском континенте остается и до настоящего времени за Испанией.

Запреты на производство ГМО на территории России

На территории России в настоящее время производство ГМО под запретом. Тем не менее, ввоз продовольствия с содержанием генно-модифицированных компонентов санкционирован. Главным образом в Россию ввозится модифицированная соя, кукуруза, ГМО-картофель, а также свекла, причем из Соединенных Штатов. США держат пальму первенства в производстве и в потреблении ГМО-продукции. По некоторым данным, приблизительно 80% американских продуктов питания содержат в себе ГМО.

Общенациональная ассоциация генетической безопасности представила любопытную информацию. Оказывается, российский рынок питания включает в себя приблизительно 30–40% продуктов питания с содержанием ГМО. В течение последних трех лет ассоциации удалось обнаружить ГМО в продукции известных компаний, например таких, которые производят готовые завтраки.

На территории нашей страны не так давно смогли подтвердить существенный отрицательный эффект влияния генетически-модифицированных организмов на биологические и физиологические показатели некоторых животных. Так, специалистами уже упомянутой ОАГБ были представлены результаты одного из нескольких независимых исследований по изучению того, как влияет корм с содержанием компонентов ГМО, тот же ГМО-картофель на эти показатели у некоторых животных. По результатам исследований, проведенных ОАГБ вместе с Институтом изучения проблем экологии и эволюции в 2008-2010 годах, стало известно о существенном отрицательном воздействии кормов с содержанием ГМО, что отразилось на репродуктивных функциях и здоровье подопытных млекопитающих. Имеются версии, что продолжительное употребление трансгенной сои приводит к нарушению здоровья людей и животных.

Животные, принимающие ГМО-корма, демонстрировали явную отсталость в своем развитии и росте. У них были обнаружены нарушения в соотношениях полов в их выводках. Причем произошло увеличение количества особей женского пола. Более того, уменьшилась общая численность потомства, а в дальнейшем произошло полное вымирание уже во втором поколении. Ко всему прочему также существенно уменьшились репродуктивные способности у особей мужского пола.

По мнению и высказываниям специалистов, существуют риски, что от данных продуктов могут возникнуть нарушения целых пищевых цепочек. В результате в отдельных экологических системах могут даже исчезнуть некоторые виды.

В каких продуктах может быть состав ГМО?

На рынке генетически модифицированных продуктов можно найти:

  • Сою в ее разных формах (типа бобов, проростков, концентратов, муки, молока и пр.);
  • Кукурузу маис, которая может быть в разных формах (типа муки, крупы, попкорна, масла, чипсов, крахмала, сиропов и пр.);
  • ГМО-картофель в его разных формах (типа полуфабрикатов, сухого пюре, чипсов, крекеров, муки и пр.);
  • Помидоры в их разных формах (типа пасты, пюре, соусов, кетчупов, помидоров с чужим геном и пр.);
  • Кабачки, а также продукты, изготовленные с их применением;
  • Сахарную свеклу, свеклу столовую, сахара, произведенные из сахарной свеклы;
  • Пшеницу, а также продукты, изготовленные с ее применением, включая хлеб с хлебобулочными изделиями;
  • Масло подсолнечное;
  • Рис, продукты его содержащие (типа муки, гранул, хлопьев, чипсов);
  • Морковь и продукты с ее содержанием;
  • Разновидности лука репчатого, шалота, порея и прочих луковичных овощей.

Соответственно существует большая вероятность встретить ГМО в продуктах, которые производят с применением этих растений. В основном генной модификации подвергают сою, рапс, кукурузу, подсолнух, ГМО-картофель, клубнику, томаты, кабачки, паприку, а также салат. Даже детское питание содержит ГМО-продукцию. И все это можно купить в обычном супермаркете.

Сенсационные пророчества Жюля Верна

В 1994 году правнуку известного писателя-фантаста в процессе работы с семейным архивом посчастливилось обнаружить один из ранее неизданных романов Жюля Верна. Это был роман под названием «Париж в XX веке». Действие происходило в Париже XX столетия, в котором была световая реклама, телевизоры, автомобили с двигателями внутреннего сгорания.

Что самое интересное, в этом произведении было предсказание одного открытия. Это были так называемые «живые атомы», отвечающие за наследственность в растениях и живых организмах. Более того писателю-фантасту удалось как-то узнать о скрещивании генов. Он предсказал, что будут создаваться растения (по примеру помидоров), у которых разовьется способность в любых погодных условиях, даже в морозах, приносить не один урожай в году. В соответствии с идеей Жюля Верна, с помощью таких искусственно созданных растений человечеству удастся победить голод, и будет достигнуто всеобщее изобилие.

Однако не все так радужно было в этих пророчествах. Немногим позднее, спустя десятилетия, человечество обнаружит, что такие продукты окажутся чрезвычайно опасными для здоровья людей. Более того, употребление в пищу таких продуктов станет причиной одного страшного заболевания – «скоропостижной старости».

И как часто это бывает «чисто случайно», когда обнаруженному роману предстояло выйти в свет, (он уже был практически готов к печати), в торговой сети появились первые трансгенные продукты, и это были помидоры. В то время ученые впервые внесли изменения в генетическую структуру растений. Издание фантастического романа могло во многом сказаться на репутации продуктов, содержащих ГМО, поэтому его издали «слегка» сокращенным. Естественно, что информацию о влиянии ГМО на живой организм, на человека и вреде употребления продуктов ГМО засекретили. Сегодня становится ясно, что такое пророчество входит в жизнь людей. Осталась самая малость: подождать еще несколько десятилетий, чтобы убедиться в его правдивости.

Вместо заключения

В свете вышеизложенного можно сделать краткие выводы. ГМО-продукты могут быть выгодными только производителям, которые зарабатывают сверхприбыли. Явную пользу для людей ГМО-продукция, кроме экономической составляющей для их изготовителей, не несет. Впрочем, как и на сто процентов доказать вред пока невозможно, по крайней мере при настоящем мироустройстве. Такая вот история и проблема ГМО. Каждому человеку придется самому решать, какой он будет питаться пищей, и будет ли он и вся его семья употреблять эту отраву.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Наиболее точным и простым нам кажется следующее определение ГМО:

Генетически модифицированный организм (сокращенно ГМО) - живой либо растительный организм, генотип которого изменён с помощью методов генной инженерии для придания организму новых свойств. Сегодня подобные изменения производятся почти повсеместно при создании продуктов питания в хозяйственных целях, а порой, и в научных целях.

Отличие генетической модификации - в целенаправленном конструировании генотипа организма, что в отличие от случайного, характерного для природного и искусственного мутагенеза.

Как влияют на здоровье ГМ-продукты?

Сегодня доказано совершенно точно, что ГМО очень пагубно влияют на организм человека. Из-за влияния подобной продукции у человека может нарушиться процесс кроветворения. Люди, употребляющие продукты с ГМО, гораздо больше других подвержены онкологическим заболеваниям.

Интересное влияние на организм ГМО состоит в том, что человеческий организм перестает реагировать адекватно на лекарственные препараты. Иными словами, вылечить потребителя ГМО от болезни будет гораздо сложнее. Генетически модифицированные организмы, а также продукты, их содержащие, провоцируют развитие кожных заболеваний, аллергии, нарушения работы пищеварения, различных нарушений нервной системы.

Данные исследования проводились на взрослых, со сформировавшимся крепким организмом. Насколько разрушительным будет использование ГМО в питании детей, можно только вообразить. Кстати, в некоторых странах Европы запрещено использование ГМО в питании детей. Теперь производители «сливают» некачественный товар в страны третьего мира.

Генетически модифицированная соя небезопасна?

Эксперименты доказывают, что соя, генетически модифицированная, наносит особый вред здоровью и продолжению рода млекопитающих. Помимо высокого уровня смертности среди подопытных крыс, исследования выявили также повышенный уровень тревожности и даже агрессии среди самцов, самок, крысят, которых кормили продуктами, содержащими ГМО.

Сегодня витрины магазинов просто пестрят разнообразием детского питания. Есть там и овощи, и каши, и супы, и творог, - всё, что душе угодно. На самом деле не все так прекрасно.

В питании ребенка следует использовать исключительно натуральные продукты, так как только в этом случае вы можете быть уверены, что они не содержат ГМО и вы не причините вред здоровью своего чада.

Какие же именно продукты детского питания с точки зрения содержания ГМО особо опасны? Это абсолютно все мясные и рыбные консервы, продукты, содержащие соевые добавки, масло сои. Так как чаще всего, именно соя является генномодифицированным продуктом. Почти все смеси, заменяющие грудное молоко, содержат соевые добавки. Теперь, покупая коробочки и баночки, задумайтесь об этом. Пусть малыш с рождения привыкает к здоровой еде и здоровому образу жизни.

Но есть ли польза от ГМО?

ГМО против рака

В США ученые на основе ГМО разработали препарат против рака шейки матки. Уже 13 женщин испытали данный препарат на себе. Им был поставлен этот страшный диагноз. У 4 женщин значительно улучшилось состояние. У 1 пациентки рак прошел полностью. С тех пор прошло уже 2 года, и возврата заболевание не возвращается. Еще у 3 женщин опухоль уменьшилась на 20%. 7 пациенток, которые участвовали в эксперименте, к сожалению, все же умерли от рака.

Производители вакцины считают, что при использовании вакцины на более ранних стадиях заболевания результаты будут гораздо более впечатляющими. Сегодня ученые также работают с ГМО над вакцинами от рака яичников, простаты, груди, головного мозга. При современной экологии, к сожалению, даже здоровый образ жизни не убережет стопроцентно от онкологических заболеваний.

В Англии разводят трансгенных кур, у которых яйца имеют важное значение для медицины. Протеины яиц этих птиц берут для изготовления препарата, который способен излечить злокачественные опухоли. Это важное событие произошло как раз в том исследовательском заведении, в котором когда-то была создана известная овечка Долли.

Прошло с тех пор десять лет. Данное открытие ученых находится на пороге разработки совершенно новых препаратов. Эти препараты станут гораздо дешевле, их изготовление будет проще, ведь для изготовления достаточно просто иметь курятник и комбикорм. Работа ученых из Англии станет, без сомнения, новой вехой на пути исцеления человечества от страшного заболевания.

Что говорят сторонники ГМО?

Именно ГМО помогут решить проблемы с продовольствием на нашей небольшой планете. С помощью данной технологии есть возможность вывести такие растения, которым будут нипочем и засухи африканские, и болезни растений. Также можно вывести особые, генномодифицированные виды сельскохозяйственных животных, они будут давать много продукции и будут при этом не требовательны к еде, стойки к заболеваниям.

При помощи данной технологии также можно будет выращивать органы для трансплантации, выращивать растения, которые подойдут для изготовления тканей.

Что говорят противники ГМО?

Оказалось, что ГМО-кукуруза, картошка и соя значительно дороже. Кроме того, генномодифицированные растения совсем не дают жизнеспособные семена. То есть, в первую очередь, это выгодно только поставщикам посадочного материала.

Другой важный минус состоит в том, что культурные ГМО растения на поле дают с дикорастущими растениями гибриды. Можно только представить себе, какие мутанты будут на нашей планете через несколько десятков лет.

Помимо прочего, может получить новое направление международный терроризм. Ведь можно создать столько новых и неизвестных вирусов, справиться с которыми будет очень и очень сложно, так как при их создании есть возможность заложить любые качества.

На территории большинства стран сегодня ставится специальная маркировка на продукты питания, которая указывает на то, что в нем отсутствует ГМО. Покупать продукты с ГМО или нет - выбор всегда остается за вами.

Генетически модифицированные организмы


Сегодня уже трудно найти человека, никогда не слышавшего слов «генетически модифицированные организмы» и «трансгеника». Из научных статей и инженерных проектов трансгенн ые организмы уже перекочевали в карикатуры и анекдоты. Но и по сей день мало кто знает, какие фундаментальные и технические проблемы понадобилось решить для их создания и какие новые проблемы они создают.

У каждого вида живых существ свой уникальный набор генов. В них записаны все врожденные черты несущего их организма: форма листа или цвет перьев, число щупалец или размер ягод. Записаны в виде последовательности определенных молекул - нуклеотидов, играющих роль букв. Это кажется странным - но не более, чем, скажем, цифровое изображение, точно так же записанное в виде некоторого текста на специальном языке.

Однако в разных компьютерах используются разные коды. А вот генетический код одинаков для всех без исключения живых существ. Гены разных видов - это разные тексты, написанные на одном и том же языке, не знающем ни диалектов, ни даже разных шрифтов. Если ген каким-то образом попадет внутрь чужой клетки, ее аппарат уверенно считает с него никогда прежде не виданный белок. Например, наши клетки, зараженные вирусом гриппа, усердно вырабатывают записанные в его генах белки - скажем, нейраминидазу, вызывающую у нас тошноту и головную боль.

Сеанс игры вслепую

Сразу, как только это выяснилось, у ученых возник соблазн поиграть в генетический конструктор: взять ген из одного организма и перенести в другой. Но легко сказать «взять и перенести» - каждая «буква», которыми записан генетический текст, состоит всего из нескольких атомов. Объекты такого размера нельзя увидеть ни в какой микроскоп - их размер намного меньше длины световой волны. А ведь нужно было не только опознать в клетке определенный ген, но и аккуратно вырезать его, перенести внутрь другой клетки, вставить в одну из ее хромосом. И еще сделать так, чтобы он там попал в «считывающее устройство» - ведь в каждый момент в клетке работают лишь немногие из имеющихся в ней генов, и мы до сих пор не вполне понимаем, как она выбирает, какие гены считывать. На обзаведение инструментами, позволяющими хотя бы приступить к решению этих задач, у молекулярной биологии ушло почти двадцать лет.

Первый шаг к созданию трансгенн ого организма - это определение «донорского» гена. Само по себе это не так уж просто: если, скажем, нас интересует производство какого-нибудь вещества - ну, например, аминокислоты триптофана, - нужно выделить и очистить фермент , который его делает, определить его аминокислотную последовательность, «вычислить» по ней последовательность нуклеотидов в соответствующем гене (что не так-то просто: одну аминокислоту могут кодировать несколько сочетаний нуклеотидов) и найти этот ген. Впрочем, соответствие между интересующим разработчика продуктом и ответственным за него геном можно установить и другими путями, и множество генов было идентифи цировано еще до возникновения трансгеники. Что до их расшифровки, то с этой задачей, за решение которой в 70-е годы давали Нобелевские премии, сегодня успешно справляется автоматика.

Но вот нужный ген опознан, прочитан, установлено его место в геном е донора. Теперь надо его вырезать. С этого и начинается собственно генная инженерия . Ножницами для вырезания нужного гена служат специальные ферменты- рестриктазы . Вообще-то ферментов, умеющих разрезать нить ДНК, очень много, но рестриктазы рассекают ее по строго определенному сочетанию букв-нуклеотидов - своему для каждой рестриктазы (а их известно сейчас более сотни). Конечно, никто не гарантирует, что границы интересующего нас участка будут отмечены каким-либо из этих ключевых сочетаний, но, зная текст искомого гена, можно так выбрать рестриктазы, чтобы среди нарезанных ими кусочков были и те, что содержат его целиком. Кроме него в состав этих фрагментов будут, вероятно, входить обрезки соседних участков ДНК, но их можно убрать экзонуклеазами - ферментами, откусывающими по одному нуклеотиду с конца нити ДНК.

Впрочем, в последнее время появился способ скопировать нужный участок, не вырезая его, - полимеразная цепная реакция. Для нее достаточно иметь лишь затравку - маленький кусочек ДНК, соответствующий началу нужного гена. При определенных условиях эта затравка может послужить сигналом для фермента полимеразы - снять копию с гена, начинающегося этим фрагментом. Мало того - когда копия будет готова, полимеразы примутся снимать копии и с нее, и с участка, послужившего ей образцом. Копии начнут множиться лавинообразно, пока в системе не исчерпается запас свободных нуклеотидов. Это выглядит примерно как если бы в собрание сочинений Пушкина подкинули россыпь печатных букв и клочок бумаги с единственной строчкой «У лукоморья дуб зеленый...» - а через короткое время получили бы несколько сот экземпляров полного текста пролога к «Руслану и Людмиле»!

Но вот нужный ген так или иначе выделен. Теперь надо его упаковать в конверт, который доставит его внутрь чужой клетки. Обычно для этого используются природные переносчики генетической информации - вирусы и плазмиды . Последние представляют собой небольшие кольцевые молекулы ДНК, существующие в бактериальных клетках отдельно от их основного геном а. Они способны проникать из одной клетки в другую и служат бактериям чем-то вроде почтовых вирусов, позволяя им передавать друг другу полезные признаки - например, устойчивость к тому или иному антибиотику. Именно эта способность переносить гены из клетки в клетку и сделала плазмиды излюбленным инструментом генной инженерии.

Особенно удобны так называемые Ti-плазмиды, получаемые из микроорганизма Agrobacterium tumefaciens . Эта бактерия поражает стебли и листья некоторых растений, причем ее Ti-плазмиды умеют встраивать часть своей ДНК - несколько генов - в хромосому растительной клетки. Получив такой подарок, клетки начинают бурно делиться, превращаясь в разрастание рыхлой ткани (корончатый галл), и вырабатывать ряд экзотических веществ, которыми и питаются трансформировавшие их бактерии (для прочих почвенных микроорганизмов эти вещества несъедобны). По сути дела, бактерия выступает здесь как биотехнолог, вводя в геном растения гены полезных для себя признаков. Для человека же Ti-плазмиды особенно ценны именно тем, что умеют не просто доставлять нужные гены в растительную клетку, но и встраивать их внутрь ее родных хромосом.

Однако вирусы и плазмиды почти никогда не используются в биотехнологии в своем натуральном виде. Например, Ti-плазмида содержит гены растительных гормонов, заставляющих клетки растения разрастаться в рыхлую опухоль и не дающих им специализироваться - в то время как разработчики должны вырастить из генно-модифицированной клетки целое растение. Другие гены Ti-плазмиды кодируют ферменты, синтезирующие бактериальную еду - если их оставить, часть ресурсов будущего трансгенн ого растения будет уходить на производство этих ненужных человеку веществ. Кроме того, все эти гены занимают место, а оно в генетических «конвертах» дорого - увеличение размера участка ДНК, который надо доставить в клетку-мишень, резко снижает вероятность успеха. Так что перед использованием из Ti-плазмиды (как и из любого другого генетического переносчика) уже знакомыми нам инструментами вырезается всё лишнее - остаются только гены, обеспечивающие доставку «груза» по назначеннию.Такие искусственные конструкции для переноса генов на биотехнологическом жаргоне называются «векторами». Иногда, впрочем, в процессе превращения плазмиды или вируса в вектор в них кое-что и добавляют. Так, например, в векторы, созданные на основе Ti-плазмиды, добавлены регуляторные участки, позволяющие им размножаться в клетках кишечной палочки, выращивать которую в лаборатории куда проще, чем Agrobacterium tumefaciens , питающийся редкими аминокислотами.

Векторы, созданные из природных переносчиков генетической информации, решают за конструкторов еще одну задачу. Как уже говорилось, мало перенести нужный ген в другую клетку - надо еще, чтобы он там начал работать. У каждого организма есть тонкая и сложная система регуляции активности генов, следящая за тем, чтобы работали лишь те гены, продукт которых необходим в данный момент. Продукт же чужого гена клетке не нужен по определению, и никаких резонов считывать этот ген у нее нет.

С той же проблемой столкнулись когда-то и вирусы, для которых это вопрос жизни и смерти: не убедив клетку немедленно начать их считывать, они не смогут размножиться. Поэтому структурные гены вируса снабжены промотором - участком ДНК, который ферментными системами клетки воспринимается как команда начать считывание. Промотор - обычный элемент любого генетического аппарата, свои промоторы есть и у клетки-хозяина, которая регулирует активность генов, открывая и закрывая их промоторы для считывающих ферментов. Однако вирусные промоторы не подчиняются клеточным регуляторам и всегда открыты для ферментов. Так же ведут себя промоторы вышеупомянутой Ti-плазмиды. При этом один промотор заставляет клетку считывать целый ряд примыкающих к нему генов. Вектор с таким промотором не только вставляет нужные генетические тексты в геном клетки-мишени, но и заставляет ее немедленно приступить к их чтению.

Закладка «письма» в «конверт» происходит так: вектор, физически представляющий собой кольцевую молекулу ДНК, разрезают в нужном месте рестриктазами, приводят в контакт с копией выделенного гена и добавляют сшивающий фермент - лигазу. Она соединяет два отрезка ДНК - ген и вектор - снова в колечко. Теперь остается только внедрить полученную рекомбинантную ДНК в клетку-мишень. Как мы уже знаем, векторы умеют делать это сами, но им можно помочь, повысив проницаемость клеточной мембраны с помощью некоторых солей или электрического тока. Если мишенью является бактерия, то не обязательно даже встраивать нужный ген в основной геном - он может работать и в плазмиде-векторе...

Тут возникает очередная трудность: молекулярные конструкторы работают сразу с большим количеством объектов - генов, векторов, клеток-мишеней. Понятно, что каждая операция имеет не стопроцентный выход, и в итоге далеко не все клетки-мишени получают донорский ген. Трансгенн ые клетки нужно отделить от неизмененных. Для этого еще при создании рекомбинантной ДНК в вектор вместе с нужным геном встраивают ген устойчивости к какому-нибудь антибиотику. А после воздействия таких векторов клетки-мишени высевают на питательную среду, содержащую этот антибиотик. Тогда все клетки, в которые вектор не внедрился или не работает, погибнут, и останутся только трансгенн ые.

Если объектом работы были микроорганизмы, то задача выполнена: создана популяция трансгенн ых клеток, которые теперь нужно только размножить. С растениями сложнее: из культур ы клеток надо вырастить целостный организм. Но делать это растениеводы научились задолго до появления генной инженерии. Сложнее всего с животными: у них генной модификации приходится подвергать оплодотворенные яйцеклетки, причем при работе с млекопитающими их еще надо потом имплантировать суррогатной матери. Именно поэтому трансгенн ых животных создано во много раз меньше, чем растений и микробов. А до массового коммерческого разведения пока не дошло ни одно. Впрочем, последнее обстоятельство, возможно, имеет и другие причины.

Доверяй, но проверяй

Доводы против трансгенн ых организмов и продуктов в огромной степени состоят из «черного пиара», порожденного конкурентной борьбой агропромышленных корпораций, а также принципиально не проверяемых религиозно-идеологических утверждений (вроде тезиса о «вмешательстве в божественный замысел») и обычных бытовых страхов перед неизвестным. Но помимо этой информационной грязи в дискуссиях о безопасности ГМО можно разглядеть и реальные проблемы.

Самая серьезная из них - это угроза естественному биоразнообразию. Пыльца с ГМ-растений может попадать на цветы их диких предков, выпуская тем самым чужой ген в свободное плавание по дикой популяции. Если этот ген обеспечивает своим обладателям какое-нибудь жизненное преимущество (а ГМ-сорта часто отличаются от традиционных именно устойчивостью к засухе, морозу, вредителям и т. д.), то он очень быстро распространится в дикой популяции, полностью вытеснив дикую форму, - и мы, по сути дела, потеряем один из видов живых существ, восстановить который потом будет невозможно никакими мерами. То, что на месте утраченного вида будут расти его трансгенн ые родственники, дела не меняет: домашние лошади и коровы не могут заменить нам своих истребленных предков - тарпана и тура .

Впрочем, культур ные растения часто могут скрещиваться не только со своими прямыми предками, но и с близкородственными видами, многие из которых - злостные сорняки. Если к ним попадет, скажем, ген устойчивости к гербициду (а более половины всех промышленно выращиваемых в мире ГМ-растений - это сорта, устойчивые к препарату «раундап»), получится «суперсорняк», бороться с которым будет очень сложно.

Реальный способ предотвращения этих эффектов был предложен еще в 1998 году, когда лидер трансгенн ых технологий в растениеводстве компания Monsanto разработала сорт ГМ-пшеницы, который помимо устойчивости к вредителям обладал также специальным геном -терминатором: содержащие его зерна по вкусовым и питательным свойствам ничем не отличались от обычных, но при высевании не прорастали. Бесплодными были и гибриды этого сорта с традиционными пшеницами, что исключало бесконтрольное распространение трансгенн ого наследственного материала. Компанию тут же обвинили в попытке «подсадить» фермеров на ежегодные закупки семян, и на следующий год она заявила об отказе от вывода на рынок технологии гена-терминатора. Однако биотехнологи не оставили эту многообещающую идею: в нескольких лабораториях созданы хитрые генетические механизмы, позволяющие ГМ-растениям успешно скрещиваться между собой, но делающие бесплодными семена, у которых только один из родителей был трансгенн ым.

Еще острее проблема предотвращения выхода сконструированных генотипов в окружающую среду стоит, если трансгенн ые технологии применяются к животным. Рыбоводы знают: если рыбное хозяйство использует естественный водоем, то как его ни ограждай, а рано или поздно тот вид, который в нем выращивают, будет встречаться по всей реке. Между тем сейчас из уже созданных ГМ-животных ближе всего к коммерческому использованию быстрорастущий трансгенн ый лосось компании Aqua Bounty. С самого начала в его геном е было изменено число хромосом. Это позволяет исключить его скрещивание с рыбами из природных популяций - но не размножение его в природных водоемах, если он в них попадет.

Пока, однако, прецедентов генетического загрязнения окружающей среды не зафиксировано - известны только случаи появления трансгенн ых растений на полях, засеянных обычными сортами (обычно за счет переноса пыльцы). Хотя масштабы разведения трансгенн ых организмов уже сейчас огромны (помимо сельского хозяйства ГМО широко применяются в фармацевтической промышленности - в развитых странах многие препараты белковой природы, в том числе такие важнейшие, как интерферон и инсулин, производятся микроорганизмами, которым вставлены соответствующие человеческие гены), и наблюдения за ними были тщательными, а порой и пристрастными (стоит заметить, что в России пока не принят закон, разрешающий выращивать ГМ-культур ы, однако можно использовать импортные трансгенн ые культур ы; для этого продукт должен пройти медико-биологическую, медико-генетическую и технологическую экспертизы. - Ред. ). Не подтвердились и другие теор етические опасения, высказывавшиеся специалистами на заре «трансгенн ой эры». Предполагалось, например, что внедренный ген в чуждом для себя окружении может оказаться неустойчивым, склонным покидать «новую родину» и посредством вирусов распространяться по другим организмам. Вообще-то такое происходит и с «родными» генами, но ожидалось, что донорские гены будут делать это гораздо чаще. Однако прямые исследования интенсивности «горизонтального переноса» (так генетики называют обмен генетическим материалом между организмами разных видов) не выявили каких-либо отличий трансгенн ых сортов и штаммов от обычных.

Немало подозрений вызвало и то, что большинство трансгенн ых организмов несет в себе гены устойчивости к антибиотикам. Само собой напрашивалось предположение, что при поедании продуктов из таких ГМО эти гены могут быть переданы бактериям, находящимся в теле человека. Пусть даже не болезнетворным, а симбиотическим, вроде кишечной палочки, - бывает, что обычная микрофлора человеческого организма вдруг становится патогенной, и если мятежные бактерии окажутся устойчивыми к антибиотику, это сильно затруднит лечение. В начале 90-х даже появились работы, в которых сообщалось о том, что у людей, употреблявших ГМ-продукты, устойчивость патогенных микроорганизмов к антибиотикам обнаруживается чаще. Однако более тщательные исследования не подтвердили этого эффекта. Вообще до сих пор все сообщения о вреде, нанесенном людям или животным употреблением ГМ-пищи, оказывались либо выдумкой, либо неверной интерпретацией фактов. Скажем, в выступлениях против использования ГМО до сих пор встречаются ссылки на канцерогенность популярного производителя аспартама, производимого при помощи трансгенн ых бактерий. На самом деле аспартам первоначально производился двумя способами: биотехнологическим и чисто химическим. К настоящему времени второй способ полностью вытеснил первый, и весь производимый сегодня в мире аспартам - синтетический. Его канцерогенность от этого, естественно, никуда не делась, но она, как и следовало ожидать, связана со свойствами самого вещества. А не со способом его получения и уж тем более - не с трансгенн остью производящих его бактерий.

Другое дело, когда объектом генно-инженерных манипуляций становится сам человек. В последние годы большие надежды медиков были связаны с генной терапией, позволяющей исправлять генетические дефекты в клетках человеческого тела. Такое лечение уже применялось при некоторых заболеваниях - в частности, при комбинированном врожденном иммунодефиците. Эта болезнь исключает развитие у ребенка иммунной системы, обрекая его на смерть от первой попавшейся инфекции. До появления генной терапии медицина ничем не могла помочь таким младенцам.

Однако программа генно-терапевтического лечения этой болезни была закрыта в 2002 году, когда у двух из проходивших ее 11 детей была обнаружена лейкемия. Видимо, это не было случайным совпадением. Вектор с доставляемыми генами может внедриться в любой участок геном а, и у пострадавших малышей он оказался соседом гена LMO2, о котором давно известно, что его избыточная активность (которую вполне может обеспечить входящий в состав вектора мощный вирусный промотор) приводит к лейкемии. Конечно, вероятность того, что вектор внедрится именно рядом с LMO2 или другим протоонкогеном , весьма мала. Но каждому пациенту вводили примерно миллион «генетически отремонтированных» клеток, а для развития лейкемии может хватить и одного рокового попадания.

Этой истории оказалось достаточно, чтобы скомпрометировать применение в медицине вирусных векторов - но не саму идею генной терапии. Сегодня медики рассматривают возможность безвирусной доставки в клетку нужных генов. В биотехнологии такие методы давно известны: например, использование липосом (жировых пузырьков-капсул, способных проникать через клеточную мембрану) или «генной пушки» - прямого обстрела клеток микрочастицами золота с зафиксированными на их поверхности генами. Правда, эти пути свободны не только от опасностей, но и от удобств векторного переноса: вероятность встраивания переносимого таким образом гена в хромосому клетки-мишени намного меньше и при этом нет никаких гарантий, что даже в случае успешного попадания он начнет там работать. Тем не менее, по единодушному мнению медицинского сообщества, через 10-15 лет «генетический ремонт» превратится в массовую процедуру.

Конечно, никто не может сказать, что ему известны все последствия использования трансгенн ых технологий и что они ни при каких условиях не могут принести вреда. Но ведь любое из великих изобретений, легших в основу человеческой цивилизации, - огонь, топор, домашние животные, колесо, лодка - никогда не было абсолютно безопасным, и никто не мог предвидеть всех последствий его применения.

Верстовые столбы

1944 - Эвери, Мак-Леод и Маккарти показали, что «вещество наследственности» - это ДНК.

1953 - Джеймс Уотсон и Фрэнсис Крик определили структуру молекулы ДНК - двойную спираль.

1961-1966 - расшифрован генетический код - принцип записи в ДНК и РНК последовательности аминокислот в белках.

1970 - выделена первая рестриктаза.

1973 - Гобинда Корана синтезировал полноразмерный ген; Герберт Бойер и Стэнли Коэн предложили стратегию создания рекомбинантных ДНК.

1976-1977 - разработаны методы определения нуклеотидных последовательностей (секвенирования) любых ДНК.

1978 - фирма Genentech выпустила рекомбинантный инсулин, производимый человеческим геном , введенным в бактериальную клетку.

1980 - Верховный суд США вынес вердикт о законности патентования трансгенн ых микроорганизмов.

1981 - поступили в продажу автоматические синтезаторы ДНК.

1982 - в США впервые поданы заявки на проведение полевых испытаний трансгенн ых организмов; в Европе разрешена первая вакцина для животных, полученная методами генной инженерии.

1983 - для трансформации растений применены гибридные Ti-плазмиды; компания Monsanto начала создание трансгенн ых растений.

1985-1988 - разработан метод полимеразной цепной реакции (ПЦР).

1990 - в США утвержден план испытаний генной терапии с использованием человеческих клеток; официально начаты работы над всемирным проектом «Геном человека» (завершен в 2000 году).

1994 - получено первое разрешение на возделывание трансгенн ого растения (помидора сорта FlavrSavr).

1996 - началось массовое выращивание трансгенн ых растений.

1998 - Европейский Союз ввел мораторий на регистрацию новых ГМ-культур , действовавший до 2002 года.

2000 - принят Картахенский протокол по биобезопасности (вступил в силу в 2003 году), установивший наиболее общие международные нормы обращения с трансгенн ыми организмами.

«Мичурин со своей селекцией устарел, настало время генно-модифицированных организмов», - однажды заявили ученые, а потом годами принялись убеждать, насколько они правы, отвечая на вопрос, что такое ГМО, кратким - будущее. Больше: это контролируемая эволюция. Другие в ГМО видят вред и не торопятся соглашаться с инновациями. А когда речь заходит о пищевом использовании, к таким ученым, как правило, присоединяются обычные люди. Итак, от ГМО польза или вред? Разобраться в этом вопросе не так-то просто.

Цели создания ГМО

К генно-модифицированным технологиям обращаются ученые, чтобы развить сельское хозяйство и медицину. Например, введение ГМО оправдывает свойства, которыми начинают «обладать» растения. Им не страшен холод, пестициды, засуха и скудная почва. Кроме того, в качестве цели использования генно-модифицированных организмов называют желание «накормить» население стран третьего мира.

Что такое ГМО - польза или вред

Генно-модифицированный организм - это природный организм, намеренно измененный человеком. Генная методика применяется, чтобы снизить убытки в сельском хозяйстве, а также добиться большей урожайности и устойчивости растений и овощей к не всегда благоприятным условиям окружающей среды. Для научной медицины ГМО (польза или вред там пока не определились, так как ведутся исследования) также представляет интерес.

ГМ-пища - это продукты, полученные из генетически-модифицированных организмов, или имеющие таковые в своем составе. Сторонники выделяют несколько целей генной модификации:

  1. Повысить устойчивость сельско-хозяйственных культур к пестицидам, насекомым, вирусам и грибам.
  2. Создать растения, полезные в очистке сточных вод и грунтов.
  3. Сделать растения неуязвимыми перед холодом или засухой, а также солями и алюминием, содержащимися в земле.
  4. Повысить урожайность, увеличить содержание витаминов и минералов в готовой продукции.

Однако ученые тут же признают потенциальную опасность таких организмов:

  1. Выращиваемые ГМ-продукты могут негативно повлиять на экосистему.
  2. Гены устойчивы к влиянию антибиотиков, это может передаться и человеку.
  3. В ГМ-продуктах может возникнуть новый аллерген.

Некоторые анти-ГМО настроения связывают с противостоянием Европы и США. Америка, тиражируя ГМ-продукты, мешает европейским производителям и вытесняет их с рынка. Позиция «против» быстро переходит к другим странам. В Скандинавии тоже запрет ГМО.

Проверка на безопасность

Перед выпуском на рынок ГМ-продуктов ученые ставят опыты на мышах или крысах, которых кормят модифицированной пищей. Генетически-модифицированные организмы, впервые поступающие на рынок России, подвергаются медико-генетической и биологической оценкам. В России изучение ГМ-продуктов ведется в НИИ питания РАМН и Роспотребнадзоре.

Этапы получения таких организмов:

  1. Сначала выводят изолированный ген, обладающий определенными свойствами.
  2. Помещают ген в ДНК модифицируемого организма.
  3. Переносят обратно в организм ДНК с геном.
  4. Отбирают успешно измененные организмы.

Продукты с ГМО

В каких продуктах содержится ГМО? Что массово человечество потребляет ежедневно, то и пытаются выращивать с применением ГМ-технологий. Они чаще бывают в сое, картофеле, свекле, рисе, тыкве, рапсе, помидорах и кукурузе. В России раньше позволяли использовать ГМ-технологии в соевых, кукурузных, свекольных и рисовых сортах. В РФ насчитывалось 18 сортовых линий, по всему миру - больше сотни.

Чтобы распознать продукты с генетически-модифицированными организмами, нужно знать следующие правила:

  • ГМ-овощи и фрукты имеют правильную форму, одинаковый размер и долго остаются свежими;
  • импортные продукты с пометкой «Натурально»/«Natural» могут содержать ГМО;
  • пометка «100% натурально»/«100% natural» гарантирует отсутствие ГМО;
  • продукты с соевым концентратом и многими добавками, скорее всего, содержат ГМО - E111, E222, E333;
  • на упаковке продуктов, прошедших соответствующую сертификацию, производитель может поместить обозначение «не содержит ГМО».

Все ГМО подлежат обязательной регистрации: в открытой базе данных содержится информация обо всех выпущенных на рынок ГМ-продуктах с описанием их изменений.

Защитники ГМО часто в доказательство своей позиции упоминают доклад генерального директора Еврокомиссии по науке и информации, в котором опасность ГМ-продуктов ставится под сомнение из-за упора на мнение о безвредности ГМ-технологий в сельско-хозяйственных культурах в той же степени, как и традиционных технологий селекции.

За и против ГМО

Итак, возможно ли применение ГМО? За или против российские ученые? В Российской академии наук давно создана комиссия, задачами которой является разоблачение лженауки. Тот же орган обязан не допускать распространения фальсификаций в научных изысканиях. После успешно завершенной борьбы с гомеопатией вдохновленные специалисты взялись за ГМО. Они уверены, что вред ГМ-продуктов надуманный и хватит уже стращать народ.

Специалисты долго разрабатывали специальный меморандум, который обещали обнародовать осенью 2017 г. Потом эту новость объявили фейковой, но прямую речь председателя комиссии по этой теме к выдумке отнести нельзя. Мнение ученые высказали, и слова обратно не взяли. Но от меморандума все-таки открестились.

Судя по заявлениям комиссии РАН, защиту ГМО она все-таки готовила. Ученые обещали аргументировано доказать лженаучность теории об ущербе, который оказывает ГМО на организм человека и вообще все живое. Ученые РАН говорят, что за ГМ-продуктами будущее человечества, а гонения на это «чудо» мысли - не иначе как мракобесие и предрассудки.

Положительные оценки

В общем, глава комиссии профессор Евгений Александров считает всех противников ГМО невежами. Его аргументы просты: население ждало бы полное вымирание от голода, если бы ученые мужи не придумали ГМО. Еще один тезис, по мнению Александрова, достойный внимания и уважения скептиков: в генной модификации используется активный метод, который меняет наследственность и встраивает сторонние генотипы в ДНК растений.

И самое «красноречивое», по мнению российского защитника ГМО, доказательство: все население Земли обязано своим существованием ГМ-продуктам - без них нас было бы меньше, чем 7 миллиардов. Он же упомянул, что если мы изгоним ГМО, население планеты значительно поредеет (останется до 1 миллиарда человек).

Выдвигая такие тезисы, комиссия ратует за конкурентную борьбу между сельхозпроизводителями. Им видится неправильным, когда бизнесмены, которые выращивают натуральные овощи, платят за исследования, подтверждающие вред здоровью человека от ГМ-продуктов. В РАН говорят, что так ведется нечестный и недобросовестный бизнес.

Почему ученые комиссии по борьбе с лженаукой так считают - непонятно. Не замалчивать же негативные результаты. Если они правдивые и действительно говорят об ущербе человечеству, то при чем здесь бизнес. К тому же о том, что эти «проплаченные» анализы являются фальсификаций, заявлений защитники ГМО не делают.

В общем, какой-то зыбкий и неубедительный тезис. С тем же самым успехом можно усомниться в работе «адвокатов» ГМО из РАН.

Против ГМО

Профессор Александров говорит, что за десяток лет ученые всего мира изучают влияние генетически-модифицированной пищи на все живое. 1 700 научных проектов говорят лишь о положительном воздействии.

Противники ГМО в противовес приводят свои исследования, ставящие под сомнение выводы оппонентов. Причем вопросов к ГМО больше, чем ответов. Выяснили, например, что пыльца с территорий, засеянных генно-модифицированной пшеницей, безусловно повлияет и на соседние, «заражая» их.

ГМ-продукцию развивают аргентинцы, американцы, мексиканцы, а также страны юго-восточной Азии. По заявлению, сделанному в марте академиком РАН Владимиром Шумным, в России генно-модифицированные организмы не пригодятся лет 50-100. Земельные ресурсы и другие факторы позволяют выращивать много и без генной инженерии.

Среди противников ГМО встречаются и довольно резкие позиции: ГМ-продукты - биологическое оружие.

ГМО и сельское хозяйство

Исследование безопасности ГМО давно заботит ученых, о чем говорят около двух тысяч исследований на эту тему. При положительных выводах биологи не понимают, почему традиционные методы селекции не пугают противников, а создание генетически-модифицированного организма - напротив. Может, потому что селекция испытана веками?

Если говорить о ГМО в сельском хозяйстве, то биологи объясняют неодинаковое влияние видов и их вред. Например, можно задать ген растению, чтобы оно стало ядом для вредителей-насекомых, а можно «сбить» схему и получить растение, легко переносящее воздействие гербицидов. И самая большая гордость ученых в применении ГМО в сельском хозяйстве - ГМ-рис, обогащенный витамином А.

Впрочем, ГМО внедрено и в медицину. Например, ГМ-бактерии используются в производстве инсулина.

Соя-ГМО: технология получения

Генно-модифицированная соя не боится гербицидов. Когда ее выращивают, поля «сдабривают» глифосатом и другими ядами. Погибает вся растительность, кроме сои-ГМО (технология выращивания предполагает такие "жертвы"), но с уходом сорняков происходит изменение и среды обитания насекомых и птиц. Получая поле сои, человек ломает экосистему и влияет на природу.

ГМО-сою выращивают в США, Бразилии, Аргентине, Канаде, Мексике, Румынии и Уругвае. Первыми начали выводить культуру американцы из-за падения урожайности. Позже фермеры США часто приводили данные: с 1930 по 2006 г. прирост урожайности составлял больше 26 кг, а с внедрением ГМО-сои с 1997 по 2009г. - больше 44 кг.

ГМО - это польза или вред, американские фермеры так вопрос не ставили. Прибыль будет или нет - вот, что волновало.

Позиция России и Европы

Президент РФ Владимир Путин летом 2016 года поставил свою подпись в закон, который не допускает выкармливание и разведение в РФ по технологиям генной инженерии растений и животных. Исключение - проведение научных исследований и анализов. За несоблюдение пунктов закона - санкции до 500 000 рублей.

Продукты, в содержании которых допущены ГМО, обязательно маркируются. Отметки введены с сентября 2007 года.

В России и некоторых европейских странах ввоз ГМ-семян под запретом, нельзя и развивать ГМ-продукты, но ввозить из-за рубежа - разрешено.

Есть мнение, что иногда решить: ГМО - польза или вред, мешают политические мотивы.

Greenpeace тоже против ГМО

Позиции Совета Федерации России, одобрившего законопроект о запрете выращивания ГМ, совпадают с мнением Greenpeace. Однако год назад «зеленым» пришлось выдержать натиск нобелевских лауреатов, защищающих генно-модифицированные технологии. Тогда больше 100 лауреатов Нобелевской премии призвали экологов Greenpeace не так резко критиковать ГМО, мол, генетические модификации сельскохозяйственных культур необязательно опасны и человечеству пора бы уже принять ГМО. Особенно лауреаты похвалили генно-модифицированный рис, который просто спасает население развивающихся стран.

Экологи возразили: проблему голода нужно решать другими методами, не лишая людей нормальной и природно-естественной пищи. Также экологическая организация Greenpeace заявила, что выступление сотни лауреатов Нобелевской премии в защиту генетически-модифицированной пищи - промоакция перед обсуждением сенаторами США изменений в маркировке ГМ-продуктов.

ГМО и собаки

В Китае вывели трех клонов собаки породы бигль, которые появились на свет через метод редактирования генов. Вообще, ученые будут пытаться увеличить потомство клонов до 10.

Клонирование генетически-модифицированных организмов (ГМО-собак в данном случае) заняло больше двух месяцев, и они почти ничем не отличаются от обычных. Они также могут размножаться, измененный генно-модифицированный ген будет передаваться потомству. Единственная неудача эксперимента - превышение содержания жира в крови собак. Если питание клонов не будет сбалансированным, а с упором на продукты с высоким содержанием жира, для собаки возникает риск.

Зачем Китаю генно-модифицированные собаки

Собак-клонов китайцы вывели, используя метод редактирования генов, чтобы в будущем у них появились болезни, которыми страдает человек. Генно-модифицированная собака - модель. Защитники животных сочтут такой подход жестоким, но китайские ученые строго предупреждают: этого требует развитие медицины.

У собак и человека схожи гены, и на «моделях» можно понять, насколько лекарство безопасно или как возникает риск таких заболеваний, как атеросклероз, аутизм, сахарный диабет и т. д.

Следующий шаг ученых Китая - клонирование кошки. Это, конечно, планы - неизвестно, как эксперимент с собаками завершится. А в семействе кошачьих экспертов привлекают вымирающие амурские тигры и леопарды.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то