Базальные ганглии (стриарные тела). Базальные ганглии

К базальным ганглиям относят комплекс нейронных узлов серого вещества, которые располагаются в белом веществе больших полушарий головного мозга. Эти образования называют стриополитарной системой. Относится хвостатое ядро, скорлупа – вместе они образуют полосатое тело . Бледный шар на разрезе состоит из 2х сегментов – наружного и внутреннего. Наружный сегмент бледного шара имеет общее происхождение с полосатым телом. Внутренний сегмент развивается из серого вещества промежуточного мозга. Эти образования имеют тесную связь с субталамическими ядрами промежуточного мозга, с черной субстанцией среднего мозга, которая состоит из двух частей – вентральной части(сетчатой) и дорсальной(компактная).

Нейроны компактной части вырабатывают дофамин. А сетчатая часть черной субстанции по строению и функциям напоминает нейроны внутреннего сегмента бледного шара.

Черная субстанция образует связи с передним вентральным ядром зрительного бугра, бугорками четверохолмия, с ядрами моста и двухсторонние связи с полосатым телом. Эти образования получают афферентные сигналы и сами формируют эфферентные пути. Чувствительные пути к базальным ганглиям идут от коры больших полушарий и главный афферентный путь начинается от моторной и премоторной зоны коры.

Корковое поля 2,4,6,8. Эти пути идут к полосатому телу и бледному шару. Имеется определенная топография проекции мышц дорсальной части скорлупы представлены мышцы ног, рук, а в вентральной части – рта и лица. От сегментах бледного шара идут пути к зрительному бугру переднем вентральному и вентролатеральному ядрам, от которых информация будет возвращаться в кору.

Большое значение играют пути к базальным ядрам от зрительных бугров. Обеспечивают получение сенсорной информации. К базальным ядрам также через зрительный бугор передаются влияния от мозжечка. Также имеются чувствительные пути к полосатому телу от черной субстанции. Эфферентные пути представлены связями полосатого тела с бледными шарами, с черной субстанцией, ретикулярной формацией ствола мозга, от бледного шара идут пути к красному ядру, к субталамическим ядрам, к ядрам гипоталамуса и зрительных бугров. На подкорковом уровне сложные кольцевые взаимодействия.

Связи коры больших полушарий, зрительного бугра базальные ганглии и снова кора формируют два пути: прямой(обеспечивает облегчение прохождения импульсов) и непрямой(тормозной)

Непрямой путь. Оказывает тормозящее действие. Этот путь тормозной идет от полосатого тела к наружному сегменту бледного шара и полосатое тело тормозит наружный сегмент бледного шара. Наружный сегмент бледного шара тормозит Люисово тело, которое в норме оказывает возбуждающие действие на внутренний сегмент бледного шара. В этой цепочке есть два последовательных торможения.

При прямом пути кора больших полушарий оказывает на полосатое тело, полосатое тело тормозящее действие на внутренний сегмент бледно шара, происходит растормаживание.

Черная субстанция(вырабатывает дофамин) В полосатом теле есть 2 вида рецепторов Д1- возбуждающие, Д2 – тормозящие. Полосатое тело с черной субстанцией два тормозящих пути. Черная субстанция тормозит полосатое тело дофамином, а полосатое тело черную субстанцию ГАМК. Высокое содержание меди в черной субстанции, синем пятне ствола мозга. Возникновение стриополитарной системы было необходимо для совершения перемещения тело в пространстве - плаванье, ползанье, полет. Эта система образует связь с подкорковыми двигательными ядрами(красное ядро, покрышка среднего мозга, ядра ретикулярной формации, вестибулярные ядра) От этих образований – нисходящие пути в спинной мозг. Все это вместе образует экстрапирамидную систему.

Двигательная активность реализуется через пирамидную систему – нисходящие пути. Каждое полушарие связано с противоположной половиной тела. В спинном мозге с альфа моторными нейронами. Через пирамидную систему реализуются все наши желания. Она работает с мозжечком, экстрапирамидной системы и выстраивается несколько контуров – кора мозжечка, кора, экстрапирамидная система. Зарождение мысли возникает в коре. Для того, чтобы его совершить необходим план движения. Который включает в себя несколько компонентов. Они связываются в один образ. Для этого нужны программы. Программы быстрых движений – в мозжечке . Медленных – в базальных ганглиях. Кора выбирает необходимые программы. Она создает единственную общую программу, которая будет реализовано через спинальные пути. Чтобы сделать бросок мяча в кольцо нам нужно принять определенную позу, распределить тонус мышц – это все на подсознательном уровне – экстрапирамидная система. Когда все будет готово произойдет само движение. Стриополитарная система может обеспечивать стереотипные заученные движения – ходьба, плаванье, езда на велосипеде, но только когда они заучены. При выполнение движение стриополитарная система определяет масштаб движений – амплитуда движений. Масштаб определяется стриополитарной системой. Гипотония-пониженный тонус с гиперкинезом - повышенная двигательная активность.

Человеческое тело состоит из большого количества органов и структур, главными из которых являются мозг и сердце. Сердце – это двигатель жизни, а головной мозг – координатор всех процессов. Кроме знаний о главных отделах мозга нужно знать и про базальные ганглии.

Базальные ядра отвечают за движение и координацию

Базальные ядра (ганглии) – скопления серого вещества, образующие группы ядер. Отвечает этот отдел мозга за движения и координацию.

Функции, которые обеспечивают ганглии

Двигательная активность проявляется из-за постоянного контроля пирамидного (кортико-спирального) тракта. Но он обеспечивает это не полностью. Часть функций берут на себя базальные ганглии. Болезнь Паркинсона или болезнь Вильсона вызываются именно патологическими нарушениями подкорковых скоплений серого вещества. Функции базальных ядер считаются жизненно важными, а их нарушения – трудноизлечимыми.

По утверждению ученых, основной задачей работы ядер является не сама двигательная активность, а ее контроль над функционированием, а также связь групп мышц и нервной системы. Наблюдается функция контроля над движениями человека. Характеризует это взаимодействие двух систем, которые включает в себя скопление подкоркового вещества. Стриопаллидарную и лимбическую системы имеют свои функциональные особенности. Первой свойственно контролировать сокращение мышц, что в совокупности образовывает координацию. Второй же подвластна работа и организация вегетативных функций. Их сбой приводит не только к дискоординации человека, но и к нарушению умственной деятельности головного мозга.

Сбои в работе ядер приводят к нарушению функции мозга

Особенности строения

Базальные ядра головного мозга имеют сложную структуру. По анатомическому строению они включают в себя:

  • стриатум (полосатое тело);
  • амигдалоидиум (миндалевидное тело);
  • ограду.

Современное изучение этих скоплений создало новое, удобное разделение ядер на скопление черной субстанции и покрышку ядра. Но такое образное строение не дает полной картины анатомических связей и нейротрансмиттеров, поэтому следует рассматривать именно анатомическую структуру. Так, понятие полосатого тела характеризовано скоплением белого и серого веществ. Они заметны при горизонтальном срезе полушарий головного мозга.

Базальные ганглии – сложный термин, включающий в себя понятия о строении и функциях полосатого и миндалевидного тела. К тому же полосатое тело состоит из чечевицеобразного и хвостатого ганглия. Их расположение и связь имеет свои особенности. Разделены базальные ганглии головного мозга нейронной капсулой. Хвостатая ганглия связана с таламусом.

Хвостатая ганглия связана с таламусом

Особенности строения хвостатой ганглии

Второй тип нейронов Гольджи идентичен строению хвостатого ядра. Нейроны играют не последнюю роль в образовании скоплений серого вещества. Это заметно по схожим особенностям, которые их и объединяют. Тонкость аксона и укороченность дендритов идентичны. Основные свои функции это ядро обеспечивает собственными связями с отдельными участками и отделами мозга:

  • таламусом;
  • бледным шаром;
  • мозжечком;
  • черной субстанцией;
  • ядрами преддверий.

Многофункциональность ядер делает их одним из самых важных участков мозга. Базальные ганглии и их связи обеспечивают не только координацию движений, но и вегетативные функции. Нельзя забывать и о том, что ганглии отвечают и за интегративную и познавательную способности.

Хвостатое ядро своими связями с отдельными участками мозга образовывает единую замкнутую нейронную сеть. И нарушение работы любого из ее участков может стать причиной серьезных проблем с нервно-двигательной активностью человека.

Нейроны крайне важны для серого вещества мозга

Особенности строения чечевицеобразного ядра

Базальные ядра соединяются между собой нейронными капсулами. Чечевицеобразное ядро находится снаружи от хвостатого и имеет с ним наружную связь. Эта ганглия имеет форму угла с расположенной посередине капсулой. Внутренняя поверхность ядра соединена с большими полушариями, а внешняя образовывает связь с головкой хвостатой ганглии.

Белое вещество является перегородкой, разделяющей чечевицеобразное ядро на две основные системы, различающиеся по цвету. Те, которые имеют темный оттенок – это скорлупа. А те, что более светлые – относятся к структуре бледного шара. Современные ученые, работающие в области нейрохирургии, считают чечевицеобразной ганглии частью стриопаллидарной системы. Ее функции связаны с вегетативным действием терморегуляции, а также метаболических процессов. Роль ядра значительно превышает гипоталамус по этим функциям.

Ограда и миндалевидное тело

Под оградой понимают тонкий слой серого вещества. Она имеет свои особенности, связанные со строением и связями со скорлупой и «островом»:

  • ограда находится в окружении белой субстанции;
  • ограда соединена с телом и скорлупой внутренней и внешней нейронной связью;
  • скорлупа граничит с миндалевидным телом.

Ученые уверенны, что миндалевидное тело выполняет несколько функций. Кроме основных, относящихся к лимбической системе, оно является составляющей отдела, отвечающего за обоняние.

Подтверждают связь нервные волокна, которые соединяют обонятельную долю с продырявленным веществом. Поэтом, миндалевидное тело и его работа являются неотъемлемой частью организации и контроля умственной работы. Страдает также и психологическое состояние человека.

Миндалевидное тело выполняет преимущественно обонятельную функцию

К каким проблемам приводит нарушение работы ганглий?

Возникающие патологические сбои и нарушения в базальных ядрах быстро приводят к ухудшению состояния человека. Страдает не только его самочувствие, но и качество умственной активности. Человек при нарушениях работы этого участка мозга может стать дезориентированным, страдать от депрессии и т. д. Виной этому два типа патологий – новообразования и функциональная недостаточность.

Любые новообразования в подкорковой части ядер опасны. Их появление и развитие приводит к инвалидности и даже к гибели человека. Поэтому при малейших симптомах патологии следует обратиться к врачу с целью диагностики и лечения. Виной образования кист или других новообразований являются:

  • перерождение нервных клеток;
  • атака инфекционных агентов;
  • травмы;
  • кровоизлияние.

Функциональная недостаточность диагностируется реже. Это связано с природой возникновения такой патологии. Проявляется она чаще у младенцев в период созревания нервной системы. У взрослых недостаточность характеризуется предшествующими инсультами или травмами.

Как показывают исследования, функциональная недостаточность ядер более чем в 50% случаев является основной причиной появления признаков болезни Паркинсона в старческом возрасте. Лечение такого заболевания зависит от тяжести самой патологии и своевременности обращения к специалистам.

Особенности диагностики и лечения

При малейших признаках нарушения деятельности базальных ганглий следует обратиться к невропатологу. Причиной этого могут стать таким симптомы:

  • нарушение двигательной активности мышц;
  • тремор;
  • частые спазмы мышц;
  • неконтролируемые движения конечностей;
  • проблемы с памятью.

Диагностика заболеваний проводится на основании общего осмотра. Если необходимо, пациента могут направить на томографию мозга. Такой тип исследования может показать дисфункциональные зоны не только базальных ядер, но и других участков головного мозга.

Лечение дисфункций базальных ядер малоэффективное. Чаще всего терапия уменьшает проявление симптомов. Но для того чтобы результат был постоянным, следует лечиться пожизненно. Любые перерывы могут негативно отразиться на самочувствии больного.

Базальные ганглии , или подкорковые ядра , — это тесно связанные между собой структуры мозга, расположенные в глубине больших полушарий между лобными долями и .

Базальные ганглии являются парными образованиями и состоят из ядер серого вещества, разделенных прослойками белого — волокон внутренней и наружной капсул мозга. В состав базальных ганглиев входят: полосатое тело, состоящее из хвостового ядра и скорлупы, бледный шар и ограда. С функциональной точки зрения иногда к понятию базальных ганглиев относят также субталамическое ядро и черную субстанцию (рис. 1). Большой размер этих ядер и подобие в структуре у различных видов дают основание предполагать, что они вносят большой вклад в организацию работы мозга наземных позвоночных животных.

Основные функции базальных ганглиев:
  • Участие в формировании и хранении программ врожденных и приобретенных двигательных реакций и координация этих реакций (основная)
  • Регуляция тонуса мышц
  • Регуляция вегетативных функций (трофические процессы, углеводный обмен, слюно- и слезотечение, дыхание и т.д.)
  • Регуляция чувствительности организма на восприятие раздражений (соматических, слуховых, зрительных и др.)
  • Регуляция ВНД (эмоциональные реакции, память, скорость выработки новых условных рефлексов, скорость переключения с одной формы деятельности на другую)

Рис. 1. Важнейшие афферентные и эфферентные связи базальных ганглиев: 1 паравентрикулярное ядро; 2 вентролатеральное ядро; 3 срединные ядра таламуса; СЯ — субталамическое ядро; 4 — кортикоспинальный тракт; 5 — кортикомостовой тракт; 6 — эфферентный путь от бледного шара к среднему мозгу

Из клинических наблюдений давно известно, что одним из последствий заболеваний базальных ганглиев является нарушение тонуса мышц и движений . На этом основании можно было бы предполагать, что базальные ганглии должны быть связаны с моторными центрами ствола и спинного мозга. Современными методами исследования показано, что аксоны их нейронов не следуют в нисходящем направлении к моторным ядрам ствола и спинного мозга, а повреждение ганглиев не сопровождается парезами мышц, как это имеет место при повреждении других нисходящих моторных путей. Большая часть эфферентных волокон базальных ганглиев следует в восходящем направлении к моторным и другим областям коры больших полушарий мозга.

Афферентные связи

Структурой базальных ганглиев , к нейронам которой поступает большая часть афферентных сигналов, является полосатое тело . Его нейроны получают сигналы из коры больших полушарий мозга, ядер таламуса, клеточных групп черной субстанции промежуточного мозга, содержащих дофамин, и от нейронов ядра шва, содержащих серотонин. При этом нейроны скорлупы полосатого тела получают сигналы преимущественно из первичной соматосенсорной и первичной моторной коры, а нейроны хвостатого ядра (уже предварительно интегрированные полисенсорные сигналы) из нейронов ассоциативных областей коры больших полушарий мозга. Анализ афферентных связей базальных ядер с другими структурами мозга предполагает, что от них в ганглии поступает не только информация, связанная с движениями, но и информация, которая может отражать состояние общей активности мозга и быть связана с его высшими, познавательными функциями и эмоциями.

Полученные сигналы подвергаются в базальных ганглиях сложной обработке, в которой участвуют его различные структуры, связанные между собой многочисленными внутренними связями и содержащие различные типы нейронов. Среди этих нейронов большинство составляют ГАМК-ергические нейроны полосатого тела, которые посылают аксоны к нейронам бледного шара и черной субстанции. Эти нейроны продуцируют также динорфин и энкефалин. Большой удельный вес в передаче и обработке сигналов внутри базальных ганглиев занимают его возбуждающие холинергические интернейроны с широко ветвящимися дендритами. К этим нейронам конвергируют аксоны нейронов черной субстанции, секретирующие дофамин.

Эфферентные связи базальных ганглиев используются для посылки сигналов, обработанных в ганглиях, в другие структуры мозга. Нейроны, формирующие основные эфферентные пути базальных ганглиев, располагаются главным образом в наружном и внутреннем сегментах бледного шара и в черной субстанции, получающих афферентные сигналы в основном из полосатого тела. Часть эфферентных волокон бледного шара следует в интраламинарные ядра таламуса и оттуда — в полосатое тело, образуя подкорковую нейронную сеть. Большая часть аксонов эфферентных нейронов внутреннего сегмента бледного шара следует через внутреннюю капсулу к нейронам вентральных ядер таламуса, а от них — в префронтальную и дополнительную моторную кору больших полушарий. Через связи с моторными областями коры мозга базальные ганглии оказывают влияние на контроль движений, осуществляемый корой через кортикоспинальный и другие нисходящие двигательные пути.

Хвостатое ядро получает афферентные сигналы с ассоциативных областей коры мозга и, обработав их, посылает эфферентные сигналы преимущественно в префронтальную кору. Предполагается, что эти связи являются основой для участия базальных ганглиев в решении задач, связанных с подготовкой и исполнением движений. Так, при повреждении хвостатого ядра у обезьян нарушается способность выполнять движения, требующие сведений из аппарата пространственной памяти (например, учета, где расположен предмет).

Базальные ганглии связаны эфферентными связями с ретикулярной формацией промежуточного мозга, через которые участвуют в контроле ходьбы, а также с нейронами верхних холмиков, через которые они могут контролировать движения глаз и головы.

С учетом афферентных и эфферентных связей базальных ганглиев с корой и другими структурами мозга выделяют несколько нейронных сетей или петель, проходящих через ганглии или заканчивающихся внутри их. Моторная петля образована нейронами первичной моторной, первичной сенсомоторной и дополнительной моторной коры, чьи аксоны следуют к нейронам скорлупы и затем через бледный шар и таламус достигают нейронов дополнительной моторной коры. Глазодвигательная петля образована нейронами моторных полей 8, 6 и сенсорного поля 7, аксоны которых следуют в хвостатое ядро и далее к нейронам лобного глазного поля 8. Префронтальные петли образованы нейронами префронтальной коры, аксоны которых следуют к нейронам хвостатого ядра, черного тела, бледного шара и вентральных ядер таламуса и затем достигают нейронов прсфронтальной коры. Каемчатая петля образована нейронами круговой извилины, орбитофронтальной коры, некоторых областей височной коры, тесно связанных со структурами лимбической системы. Аксоны этих нейронов следуют к нейронам вентральной части полосатого тела, бледного шара, медиодорсального таламуса и далее — к нейронам тех областей коры, в которых петля начиналась. Как можно видеть, каждая петля формируется множественными корковостриарными связями, которые после их прохождения через базальные ганглии следуют через ограниченную область таламуса в определенную одиночную область коры.

Области коры, посылающие сигналы в ту или иную петлю, функционально связаны друг с другом.

Функции базальных ганглиев

Нейронные петли базальных ганглиев являются морфологической основой выполняемых ими основных функций. Среди них — участие базальных ганглиев в подготовке и осуществлении движений. Особенности участия базальных ганглиев в выполнении этой функции вытекают из наблюдений за характером нарушения движений при заболеваниях ганглиев. Предполагается, что базальные ганглии играют важную роль в планировании, программировании и выполнении сложных движений, инициируемых корой больших полушарий.

С их участием абстрактный замысел движения превращается в моторную программу сложных произвольных действий. Их примером могут быть такие действия, как одновременное осуществление нескольких движений в отдельных суставах. Действительно, при регистрации биоэлектрической активности нейронов базальных ганглиев во время выполнения произвольных движений отмечается се повышение в нейронах субталамических ядер, ограды, внутреннего сегмента бледного шара и ретикулярной части черного тела.

Повышение активности нейронов базальных ганглиев инициируется притоком возбуждающих сигналов к нейронам полосатого тела из коры больших полушарий, опосредованных высвобождением глутамата. К этим же нейронам поступает поток сигналов из черной субстанции, оказывающий на нейроны полосатого тела притормаживающее действие (через высвобождение ГАМК) и способствующий фокусированию влияния нейронов коры на определенные группы нейронов полосатого тела. В это же время к его нейронам поступают афферентные сигналы из таламуса с информацией о состоянии активности других областей мозга, имеющих отношение к организации движений.

Нейроны полосатого тела интегрируют все эти потоки информации и передают ее нейронам бледного шара и ретикулярной части черной субстанции и далее но эфферентным путям эти сигналы передаются через таламус в моторные области коры мозга, в которых осуществляется подготовка и инициирование предстоящего движения. Предполагается, что базальные ганглии еще на этапе подготовки движения осуществляют выбор типа движения, необходимого для достижения поставленной цели, отбор мышечных групп, необходимых для его эффективного выполнения. Вероятно, базальные ганглии участвуют в процессах моторного обучения путем повторения движений, причем их роль заключается в выборе оптимальных путей осуществления сложных движений для достижения желаемого результата. С участием базальных ганглиев достигается устранение избыточности движений.

Еще одной из моторных функций базальных ганглиев является участие в осуществлении автоматических движений или моторных навыков. Когда базальные ганглии повреждены, человек выполняет их в более замедленном темпе, менее автоматизировано, с меньшей точностью. Двустороннее разрушение или повреждение ограды и бледного шара у человека сопровождается возникновением навязчиво-принудительного двигательного поведения и появлением элементарных стереотипных движений. Двустороннее повреждение или удаление бледного шара ведет к снижению двигательной активности и гипокинезии, в то время как одностороннее повреждение этого ядра или не влияет, или слабо сказывается на двигательных функциях.

Поражение базальных ганглиев

Патология в области базальных ганглиев у человека сопровождается появлением непроизвольных и нарушением произвольных движений, а также нарушением распределения тонуса мышц и позы. Непроизвольные движения проявляются обычно при спокойном бодрствовании и исчезают во время сна. Различают две большие группы нарушения движений: с доминированием гипокинезии — брадикинезии, акинезии и ригидности, которые наиболее выражены при паркинсонизме; с доминированием гиперкинезии, которая наиболее характерна для хореи Хантингтона.

Гиперкинетические моторные нарушения могут проявляться тремором покоя — непроизвольными ритмическими сокращениями мышц дистальных и проксимальных отделов конечностей, головы и других частей тела. В других случаях они могут проявляться хореей — внезапными, быстрыми, насильственными движениями мышц туловища, конечностей, лица (гримасы), появляющимися вследствие дегенерации нейронов хвостатого ядра, голубоватого пятна и других структур. В хвостатом ядре обнаружено снижение уровня нейромедиаторов — ГАМК, ацетилхолина и нейромодуляторов — энкефалина, вещества Р, динорфина и холецистокинина. Одним из проявлений хореи является атетоз — медленные, продолжительные корчащие движения дистальных частей конечностей, обусловленных нарушением функции ограды.

В результате одностороннего (при кровоизлиянии) или двустороннего повреждения субталамических ядер может развиться баллизм , проявляющийся внезапными, насильственными, большой амплитуды и интенсивности, молотящими, стремительными движениями на противоположной (гемибаллизм) или обеих сторонах тела. Заболевания в области полосатого тела могут вести к развитию дистонии , которая проявляется насильственными, медленными, повторяющимися, скручивающими движениями мышц руки, шеи или торса. Примером локальной дистонии может быть непроизвольное сокращение мышц предплечья и кисти во время письма — писчий спазм. Заболевания в области базальных ганглиев могут вести к развитию тиков, характеризующихся внезапными, кратковременными насильственными движениями мышц различных частей тела.

Нарушение мышечного тонуса при заболеваниях базальных ганглиев проявляется ригидностью мышц. При ее наличии попытка изменения положения в суставах сопровождается у больного движением, напоминающим таковое для зубчатого колеса. Оказываемое мышцами сопротивление возникает через определенные интервалы. В других случаях может развиться восковая ригидность, при которой сохраняется сопротивление во всем интервале движения в суставе.

Гипокинетические моторные нарушения проявляются задержкой или невозможностью начать движение (акинезия), замедленностью выполнения движений и их завершения (брадикинезия).

Нарушения моторных функций при заболеваниях базальных ганглиев могут иметь смешанный характер, напоминая парезы мышц или, наоборот, их спастичность. При этом может развиться нарушение движений от неспособности начать движение к неспособности подавить непроизвольные движения.

Наряду с тяжелыми, инвалидизирующими нарушениями движений другим диагностическим признаком паркинсонизма является невыразительное лицо, часто называемое паркинсонической маской. Одним из его признаков является недостаточность или невозможность спонтанного смещения взора. Взор больного может оставаться застывшим, но он может перемещать его по команде в направлении визуального объекта. Эти факты предполагают, что базальные ганглии вовлечены в контроль смещения взора и зрительного внимания, используя сложную глазодвигательную нейронную сеть.

Одним из возможных механизмов развития двигательных и, в частности, глазодвигательных нарушений при повреждении базальных ганглиев может быть нарушение передачи сигналов в нейронных сетях вследствие нарушения нейромеднаторного баланса. У здоровых людей активность нейронов полосатого тела находится под уравновешенным влиянием афферентных тормозных (дофамин, ГАМ К) сигналов черной субстанции и возбуждающих (глутамат) сенсомоторной коры. Одним из механизмов поддержания этого равновесия является его регуляция сигналами бледного шара. Нарушение равновесия в сторону преобладания тормозных влияний ограничивает возможность достижения сенсорной информации моторных областей коры мозга и ведет к снижению моторной активности (гипокинезии), что наблюдается при паркинсонизме. Потеря базальными ганглиями (при заболеваниях или с возрастом) части тормозных дофаминовых нейронов может вести к облегчению поступления сенсорной информации в моторную систему и увеличению ее активности, как это наблюдается при хорее Хантингтона.

Одним из подтверждений того, что нейромедиаторный баланс имеет важное значение в осуществлении моторных функций базальных ганглиев, а его нарушение сопровождается двигательной недостаточностью, является клинически подтвержденный факт, что улучшение двигательных функций при паркинсонизме достигается при приеме L-dopa — предшественника синтеза дофамина, который проникает в мозг через гематоэнцефалический барьер. В мозге под влиянием фермента дофаминкарбоксилазы происходит его превращение в дофамин, что способствует ликвидации дофаминовой недостаточности. Лечение паркинсонизма приемом L-dopa является в настоящее время наиболее эффективным методом, применение которого позволило не только облегчить состояние больных, но и увеличить продолжительность их жизни.

Разработаны и применены методы хирургической коррекции двигательных и других нарушений у больных посредством стереотаксического разрушения бледного шара или вентролатерального ядра таламуса. После этой операции удается устранить ригидность и тремор мышц на противоположной стороне, но не устраняются акинезии и нарушение позы. В настоящее время используется также операция вживления постоянных электродов в таламус, через которые проводится его хроническая электростимуляция.

Осуществлены трансплантация в мозг клеток, продуцирующих дофамин, и пересадка в область желудочковой поверхности мозга больных мозговых клеток одного из их надпочечников, после которой в части случаев достигалось улучшение состояния больных. Предполагается, что пересаженные клетки могли стать в течение некоторого времени источником образования дофамина или факторов роста, способствовавших восстановлению функции пострадавших нейронов. В других случаях в мозг имплантировалась ткань базальных ганглиев эмбрионов, результаты которой оказались лучше. Трансплантационные методы лечения пока не получили широкого распространения и их эффективность продолжает изучаться.

Функции других нейронных сетей базальных ганглиев остаются малоизученными. На основании клинических наблюдений и экспериментальных данных предполагается, что базальные ганглии участвуют в изменении состояния активности мышц и позы при переходе от сна к бодрствованию.

Базальные ганглии участвуют в формировании настроения, мотиваций и эмоций человека, в особенности связанных с исполнением движений, направленных на удовлетворение жизненно важных потребностей (прием пищи, питье) или получение морального и эмоционального удовольствия (вознаграждения).

У большинства больных с нарушением функций базальных ганглиев выявляются симптомы психомоторных изменений. В частности, при паркинсонизме может развиваться состояние депрессии (подавленное настроение, пессимизм, повышенная ранимость, печаль), беспокойства, апатии, психоз, снижение познавательных и умственных способностей. Это свидетельствует о важной роли базальных ганглиев в осуществлении высших психических функций у человека.

Базальные ганглии являются структурами ядерного типа. Они расположены внутри больших полушарий между лобными долями и промежуточным мозгом. Базальные ганглии относятся к собственно подкорковым образованиям мозга в самом узком смысле этого понятия и включают в себя три парных образования: неостриатум, паллидум (бледный шар) и ограда (claustrum). Неостриатум состоит из двух ядер: хвостатого и скорлупы (n. caudatus, putamen). Неостриатум является филогенетически новой структурой. Наиболее отчетливо он представлен начиная с рептилий. Скорлупа и хвостатое ядро по происхождению, нейронному строению, ходу проводящих путей и нейрохимическому составу являются сходными. Оба ядра, по существу, представляют собой два тяжа серого вещества, разделенных почти на всем протяжении волокнами внутренней капсулы. Паллидум, бледный шар (globus pallidum), в отличие от неостриатума, является филогенетически более древним образованием; его гомолог обнаруживается уже у рыб. Ограда расположена между скорлупой и островковой корой. Филогенетически ограда является самым новым образованием. У ежей и некоторых грызунов ее еще нет.

Морфофункциональные связи базальных ганглиев. Неостриатум образует связи с бледным шаром. Аксоны клеток неостриатума очень тонкие, до 1мкм, поэтому проведение возбуждения от неостриатума к паллидуму медленное. Стриапаллидарные волокна образуют в основном аксо-дендритные синапсы. Неостриатум оказывает двойственное влияние на нейроны паллидума – возбуждающее и тормозное. Неостриатум посылает прямые эфференты не только к паллидуму, но и к черной субстанции. Стрионигральные связи по своей природе моносинаптические и двусторонние. Большой интерес представляет обратная связь – от черной субстанции к неостриатуму. Считается, что аксоны нейронов черной субстанции, которые конвергируют к нейронам хвостатого ядра и к скорлупе, обеспечивают транспорт дофамина, синтезирующийся в нейронах черной субстанции. В неостриатуме он концентрируется в расширенных аксонных терминалях. Скорость транспорта дофамина по аксонам от черной субстанции к хвостатому ядру составляет приблизительно 0,8 мм в 1 час. Содержание дофамина в неостриатуме чрезвычайно велико. Имеются указания на то, что дофамина в неостриатуме млекопитающих в 6 раз больше, чем в паллидуме и передней части больших полушарий, в 19 раз больше, чем в мозжечке. Предполагается медиаторная роль этого амина в данной структуре. Кроме того, высказывается мнение о том, что дофамин активирует тормозные интернейроны неостриатума и таким образом подавляет деятельность его клеток. Выдвигается также предположение о том, что дофамин играет энергетическую роль в неостриатуме: через цАМФ он обеспечивает распад гликогена.



Помимо теоретического интереса в изучении медиаторной и метаболической функции дофамина, особое значение приобретает участие дофамина в патологии. Было установлено, что у больных с двигательными расстройствами резко падает концентрация дофамина в обоих ядрах неостриатума – хвостатом и скорлупе.

Стриаталамические связи. Неостриатум не имеет отчетливо выраженных моносинаптических связей с корой больших полушарий и с таламусом. Неостриатум осуществляет физиологическую связь с корой большого мозга и таламусом опосредованно, через бледный шар, который выступает в этом случае как неспецифическое ядро, как посредник в эфферентной импульсации хвостатого ядра и скорлупы. Постулируется замкнутый круг импульсации: неостриатум – паллидум – таламус – лобные доли – неостриатум. Этот круг носит название «каудатная петля». Ему придают большое значение в интеграции нервных процессов на высших уровнях мозга, в генезе синхронной активности коры, в регуляции сна и бодрствования.

Кортикостриарные связи. Сейчас доказано, что почти от всех полей коры к хвостатому ядру и скорлупе конвергируют прямые волокна в составе внутренней капсулы и подмозолистого пучка. Наибольшее количество волокон идет к скорлупе и хвостатому ядру от передних отделов коры. Кортикостриарные волокна отличаются пространственной организацией. Топографически это проявляется в том, что передние области коры больших полушарий представлены в головке хвостатого ядра, а задние – в каудальном отделе хвостатого ядра (рис. 2.8).

Рис. 2.8. Базальные ганглии и структуры, связанные с ними

Функции базальных ганглиев. Этот комплекс ядер довольно широко включается в интегративную деятельность центральной нервной системы. Они играют определенную роль в ориентации животных в пространстве, запуске двигательного обеспечения пищевой мотивации, регуляции цикла бодрствование – сон. Неостриатум, паллидум, клауструм входят в программу осуществления условного рефлекса. Базальные ганглии и мозжечок являются равнозначными центрами, участвующими в программировании движений. Базальные ганглии могут иметь особое значение для осуществления стереотипных «червеобразных движений». Кроме того, каждая из структур обладает своими функциональными особенностями при вкладе в организацию движения. Неостриатум принимает участие в регуляции медленных движений, в которых преобладает тонический компонент. Паллидум дифференцирует характер движений: так, активность его нейронов у обезьян изменялась под влиянием толкательных движений, но эти же нейроны не реагировали на пронационные движения. Активность клауструма (у кошек) резко учащалась при болевых раздражениях. Отмечено также, что функциональные проявления базальных ганглиев определяются не столько связями отдельных ядер между собой, сколько связями каждого из них с другими структурами центральной нервной системы. Из этих структур наибольшее значение имеют неокортекс, неспецифические ядра таламуса, субталамическое ядро, черная субстанция, гипоталамус. На этом основании в настоящее время выделяют ряд функциональных петель базальных ганглиев.

Скелетомоторная петля имеет входы от премоторной, моторной и соматосенсорной областей коры мозга. Основной поток информации идет через скорлупу, внутреннюю часть бледного шара или каудолатеральную область ретикулярной формации черной субстанции, затем через двигательные ядра таламуса и назад к шестому слою коры больших полушарий.

При регистрации активности индивидуальных клеток скорлупы и бледного шара у обезьян, которые были обучены стандартным движениям, обнаружены четкие корреляции между этими движениями и активностью определенных нейронов. Наблюдается четкая топографическая организация: активность нейронов строго определенной области базальных ганглиев всегда соответствует специфическим движениям конкретных частей тела. Кроме того, во многих случаях наблюдается корреляция с особыми параметрами движения: силой, амплитудой или направлением движения. Регистрация активности клеток показала, что путь от стриатума через латеральную область ретикулярной формации черной субстанции управляет главным образом движением лица и рта.

Окуломоторная (глазодвигательная) петля специализируется, вероятно, на регуляции движения глаз. Входные сигналы поступают от областей коры, контролирующих направление взгляда: фронтального глазного поля (поле 8) и каудальной части поля 7 теменной коры. Затем путь продолжается через хвостатое тело к дорсомедиальному сектору внутренней части бледного шара или к вентролатеральной области ретикулярной части черной субстанции. Затем идут связи к ядрам таламуса, которые дают проекции к фронтальному глазному полю. Аксоны нейронов сетчатой части черной субстанции раздваиваются, и одна ветвь идет к верхнему двухолмию среднего мозга, которое связано с движением глаз. Наблюдается положительная корреляция между активностью этих нейронов и саккадами (резкий перевод взгляда с одной точки на другую). Частота импульсации резко падает перед саккадой, что обусловлено тормозной стрианигральной связью (связью полосатого тела с черной субстанцией). Такое отключение тормозного выхода черной субстанции ведет к фазической активности таламуса или верхнего двухолмия. О полном пространственном разделении скелетомоторной и окуломоторной петель свидетельствует корреляция нейронной активности ретикулярной части черной субстанции с движениями либо глаз, либо рта, но никогда с теми и другими одновременно.

К настоящему времени накоплены анатомические данные о существовании ряда «сложных петель», которые начинаются и заканчиваются в лобных ассоциативных областях коры (дорсолатеральной, префронтальной, латеральной орбитофронтальной, передней поясной), пройдя через ассоциативные ядра таламуса. В ходе филогенеза значительно возрастают размеры и значение корковых структур, стриатума и таламуса, участвующих в сложных петлях, так что у человека они становятся более обширными, чем двигательные. Однако функции сложных петель экспериментально еще не исследованы.

Медиаторная система базальных ганглиев. Прохождение информации в описанных выше множественных параллельных трансстриальных функциональных петлях может облегчаться или подавляться модулирующими системами. Описано несколько модулирующих систем. Особого внимания среди них заслуживает дофаминергическая система. Дофаминергические нигростриальные пути (черная субстанция – полосатое тело) начинаются в сетчатой части черной субстанции. Содержащие дофамин нейроны обнаружены также поодиночке или группами вне черной субстанции, но поблизости от нее.

Очень тонкие дофаминергические аксоны сильно ветвятся, образуя по всему стриатуму относительно диффузную сеть. Вдоль этих волокон находится множество небольших, заметных в световой микроскоп утолщений, называемых варикозами. На электронных микрофотографиях они идентифицируются как пресинаптические элементы. У нейронов сетчатой части черной субстанции довольно регулярная импульсация с частотой 1 Гц. Таким образом, каждую секунду импульс одной дофаминергической клетки вызывает высвобождение дофамина в многочисленных рассеянных по полосатому телу синапсах.

Из-за своего диффузного строения дофаминергическая система не передает детализированную, топографически организованную информацию. Поэтому ее рассматривают как своего рода «ирригационную систему», модулирующую передачу информации по главному каналу. Так, было показано, что высвобождаемый в полосатом теле дофамин модулирует дофаминергическую кортикостриальную передачу (кора больших полушарий – полосатое тело). Восходящие дофаминергические волокна от среднего мозга направляются не только к стриатуму, но и к лимбическим структурам, к префронтальной коре.

Аналогичное модулирующее влияние на базальные ганглии, возможно, оказывают серотонинергические волокна от ядер шва, норадренергические от голубого пятна, а также волокна с неизвестным медиатором от интраламинарных ядер таламуса и от миндалины; все они идут к полосатому телу. Кроме того, в базальных ганглиях содержится множество местных нейронов (интернейронов), модулирующих поток информации в трансстриатных петлях. К ним относятся холинергические нейроны полосатого тела и различные пептидергические нейроны.

В течение длительного времени полосатое тело рассматривали как крупную однородную массу клеток, и лишь недавно была обнаружена его модульная организация. Окончания двух обширных систем афферентных волокон от коры больших полушарий и от ламинарных ядер таламуса образует здесь небольшие четко ограниченные центры. Анатомические эксперименты с дифференциальным окрашиванием волокон, относящихся к разным системам, показали, что в хвостатом ядре перемешаны скопления нервных окончаний от лобной и височной ассоциативной коры. Гистохимические методы дают аналогичную картину: разные медиаторы (глутамат, ГАМК, ацетилхолин, различные пептиды) обнаруживаются в пределах мелких, четко очерченных участков. Сейчас эти центры считаются независимыми компартментами, или микромодулями. Удалось проследить топографическую организацию в виде продольных колонок, идущих через весь стриатум. Таким же образом организованы проекции лобной и височной ассоциативной коры. С помощью микроэлектродного тестирования выявлены соматотопические продольные колонки, относящиеся к скелетомоторной петле. Например, в колонке верхней конечности, вероятно, собираются сигналы от премоторной, моторной и соматосенсорной областей коры. Нейроны в такой колонке объединены по сходству их соматотопических свойств.

К базальным ганглиям относятся следующие анатомические образования: полосатое тело (стриатум), состоящее из хвостатого ядра и скорлупы; бледный шар (паллидум), подразделяющийся на внутренний и внешний отделы; черная субстанция и субталамическое ядро Льюиса.

Функции БГ:

1. Центры сложных безусловных рефлексов и инстинктов

2. Участие в формировании условных рефлексов

3. Координация тонуса мышц и произвольных движений. Контроль амплитуды, силы, направления движений

4. Координация сочетанных двигательных актов

5. Контроль за движением глаз (саккады).

6. Программирование сложных целенаправленных движений

7. Центры торможения агрессивных реакций

8. Высшие психические функции (мотивации, прогнозирование, познавательная деятельность). Сложные формы восприятия внешней информации (например, осмысление текста)

9. Участие в механизмах сна

Афферентные связи базальных ганглиев . Большая часть афферентных сигналов, приходящих к базальным ганглиям поступает в полосатое тело. Эти сигналы исходят почти исключительно из трех источников:

От всех областей коры больших полушарий;

От внутрипластинчатых ядер таламуса;

От черной субстанции (по дофаминэргическому пути).

Эфферентные волокна от стриатума идут к бледному шару и черной субстанции. От последней начинается не только дофаминэргический путь к полосатому телу, но и пути, идущие к таламусу.

От внутреннего отдела бледного шара берет начало самый важный из всех эфферентных трактов базальных ганглиев, заканчивающийся в таламусе, а так же в крыше среднего мозга. Посредством стволовых образований, с которыми связаны базальные ганглии, центробежные импульсы следуют к сегментарным двигательным аппаратам и мускулатуре по нисходящим проводникам.

От красных ядер - по руброспинальному тракту;

От ядра Даркшевича – по заднему продольному пучку к ядрам 3, 4,6 нервов и через его посредство к ядру вестибулярного нерва;

От ядра вестибулярного нерва – по вестибулоспинальному тракту;

От четверохолмия - по тектоспинальному тракту;

От ретикулярной формации - по ретикулоспинальному тракту.

Таким образом, базальные ганглии играют, главным образом, роль промежуточного звена в цепи, связываемой двигательные области коры со всеми остальными ее областями.

В раннем филогенезе, когда кора головного мозга еще не была развита, стриопаллидарная система являлась главным двигательным центром, определяющим поведение животного. Чувствительные импульсы, притекающие из зрительного бугра, перерабатывались здесь в двигательные, направляющиеся к сегментарному аппарату и мускулатуре. За счет стрио-паллидарных аппаратов осуществлялись диффузные движения тела достаточно сложного характера: передвижения, плавание и др.


Одновременно с этим обеспечивалась поддержка общего мышечного тонуса, «готовность» сегментарного аппарата к действию, перераспределение мышечного тонуса при движениях.

При дальнейшей эволюции нервной системы ведущая роль в движениях переходит к коре головного мозга с ее двигательным анализатором и пирамидной системой. Наконец, у человека возникают сложнейшие действия, носящие целенаправленный, произвольный характер с тонкой дифференцировкой отдельных движений.

Тем не менее, стриопаллидарная система не утратила своего значения у человека. Она лишь переходит в соподчиненное, субординированное положение, обеспечивая «настройку» двигательных аппаратов, их «готовность к действию» и необходимый для быстрого осуществления движения мышечный тонус.

Становление функции базальных ганглиев в онтогенезе . Базальные ганглии развиваются интенсивнее, чем зрительные бугры. Бледное ядро миелинизируется раньше, чем полосатое тело и кора головного мозга. Установлено, что миелинизация в бледном шаре почти полностью заканчивается к 8 месяцам развития плода. В полосатом теле миелинизация начинается у плода, а заканчивается только к 2 месяцам жизни. Хвостатое тело в течение первых 2 лет жизни увеличивается в 2 раза, что связывают с развитием у ребенка автоматических двигательных актов.

Двигательная активность новорожденного в значительной мере связана с бледным ядром, импульсы от которого вызывают некоординированные движения головы, туловища и конечностей.

У новорожденного паллидум уже имеет связи со зрительным бугром, подбугровой областью и черной субстанцией. Связь паллидума со стриатутом развивается позже, часть стриопаллидарных волокон оказывается миелинизированная на первом месяце жизни, а другая часть - лишь к 6 месяцам и позже.

Считают, что такие акты, как плач, в моторном отношении осуществляются за счет одного паллидума. С развитием полосатого тела связано появление мимических движений, а затем умение сидеть и стоять. Так как стриатум оказывают тормозное влияние на паллидум, то создается постепенное разделение движений. Для того чтобы сидеть, ребенок должен уметь вертикально держать голову и спину. Это появляется у него к двум месяцам. Сидеть начинает к 6-8 месяцам.

В первые месяцы жизни у ребенка имеется отрицательная реакция опоры: при попытке поставить его на ножки он поднимает их и подтягивает к животу. Затем эта реакция становится положительной: при прикосновении к опоре ножки разгибаются. В 9 месяцев ребенок может стоять с помощью поддержки, в 10 месяцев он стоит свободно.

С 4-5 месячного возраста довольно быстро развиваются произвольные движения, но они еще длительное время сопровождаются многообразными дополнительными движениями.

Появление произвольных (таких как схватывание) и выразительных движений (улыбка, смех) связывают с развитием стриатной системы и двигательных центров коры больших полушарий. Громко смеяться ребенок начинает с 8 месяцев.

По мере роста и развития всех отделов головного мозга и коры больших полушарий движение ребенка становится менее обобщенными и более координированными. Только к концу дошкольного периода устанавливается определенное равновесие коркового и подкоркового двигательных механизмов.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то