У человека трубчатый тип нервной системы. Нервная система диффузного типа: характеристика

  • Автономная нервная система, её структурно-функциональные особенности. Симпатический, парасимпатический, метасимпатический отделы.
  • Введение в физиологию. Физиология ЦНС и нервная регуляция функций
  • I тип нервной системы - диффузная нервная система, характерна для типа кишечнополостных (актинии, полипы, гидры, медузы). Общий принцип работы этой наиболее древней нервной системы - нервные клетки разбросаны по телу животного, образуя сеть нейронов, и проводят возбуждение по всем направлениям. При этом, несмотря на кажущуюся примитивность организации, здесь наблюдаются явления дифференцировки и специализации на уровне клеток и проводящих нервных путей. У сцифомедуз для быстрых плавательных движений служит сеть из крупных волокон, а медленные сокращения при пищевых движениях координируются сетью из тонких волокон. У актиний медленная система проводит импульсы со скоростью от 4,4 до 14,6 см/сек, а быстрая - 120 см/сек. В диффузной нервной системе кишечнополостных существуют два типа (иногда и больше) нейронов: рецепторные (сенсорные, чувствительные), воспринимающие сигналы внешней среды и промежуточные, передающие сигналы на клетки, выполняющие сократительные (мышечные) функции. Также в диффузной нервной системе обнаружены синапсы (контакты), электрические и химические. Более примитивные электрические синапсы преобладают, а химические подразделяются на симметричные и асимметричные, как у человека, и имеют синаптические пузырьки.

    Диффузная сеть обеспечивает не только простые рефлексы, как правило, не обладающие специфичностью, например, на различные внешние воздействия актиния отвечает сжатием тела, но и некоторые сложные формы поведения. К ним относятся: принятие одних пищевых продуктов и отвергание других, подведение ротового стебелька к пище, расширение, вытягивание, дефекация и покачивание. Есть актинии, которые живут на раковинках улиток, в которых поселяются раки отшельники, когда рак переходит в новое жилье, актиния путем ряда сложных движений перебирается на новую раковину.

    На примере кишечнополостных отчетливо прослеживаются основные тенденции в эволюции нервной системы - централизация и цефализация функций.

    Под централизацией понимают объединение в процессе эволюции нервных клеток в компактные центральные образования со специфическими функциями - нервные центры (или нервные узлы).

    Цефализацией называют усиление в эволюции развития и регулирующей роли головных отделов ЦНС у животных с билатерально-симметричным строением тела. В процессе цефализации происходит усложнение строения ЦНС, развивается функциональная иерархия нижележащих структур по отношению к вышележащим. Высшей формой цефализации является кортиколизация функций у высших позвоночных, когда все структуры нервной системы попадают под контроль деятельности коры головного мозга. Цефализация связана с тем, что передний конец тела животного первым сталкивается со всеми разнообразными раздражителями внешней среды, и именно здесь, на переднем конце тела формируются дистантные рецепторы (зрения, слуха, обоняния, вкуса). Для выживания организма требуется быстрота ответных реакций на эти раздражения, поэтому анализ их производится в самом ближайшем переднем головном ганглии (нервном узле). Чем сложнее сенсорная система, тем разнообразнее реакции организма, в первую очередь, двигательной системы. Развитие двигательной системы коррелирует с выраженностью цефализации нервной системы.

    Диффузный тип нервной системы

    В ходе исторического развития жизни на Земле первыми животными, у которых появилась нервная система, являются кишечнополостные . Это беспозвоночные двухслойные животные, типичным представителем является гидра пресноводная. Тело гидры представляет собой полый мешок, внутренняя полость является пищеварительной полостью. Наружный слой клеток называется эктодермой (в дословном переводе означает «наружная кожа»), а внутренний – энтодермой («внутренняя кожа»).

    Нервные клетки гидры (рис. 14) расположены на границе между экто- и энтодермой. Они образуют простейшую нервную сеть диффузного типа. Каждая нервная клетка имеет длинные отростки и соединена с другими нервными клетками. Нервные клетки кишечнополостных являются изополярными, что означает отсутствие специализации у их отростков, а следовательно отростки проводят возбуждение в любую сторону и не образуют длинных проводящих путей. Контакты между нервными клетками в такой сети разнообразны:

    анастомозы – плазматические контакты, обеспечивающие непрерывность сети

    щелевидные контакты – подобны синапсам. Бывают двух видов:

    o симметричные синапсы – содержат синаптические пузырьки по обе стороны контакта

    o несимметричные синапсы – имеют везикулы только с одной стороны щели.

    Диффузный тип нервной системы характеризуется следующими признаками:

    Нервные клетки равномерно распределены в теле животного. У кишечнополостных имеется два неоформленных скопления нервных клеток – в районе подошвы и ротового отверстия

    Проведение возбуждения во всех направлениях. Отсутствие специализированных отростков (дендритов и нейритов) связано с отсутствием специализированной рецепции. У гидры есть отдельные рецепторные клетки, но они не способны четко дифференцировать разные раздражители. Отсюда и отсутствие четко дифференцированной ответной реакции. Кишечнополостные способны избегать неблагоприятных факторов среды, не дифференцируя эти факторы (рис. 15).

    Волну распространяющегося возбуждения сопровождает волна мышечного сокращения. Вся дальнейшая эволюция нервной системы будет связана с эволюцией рецепторных и двигательных систем.

    Вообще, для беспозвоночных животных характерно наличие нескольких источников происхождения нервных клеток. Для них возможно одновременное и независимое развитие изополярных нейронов из трех зародышевых листков (впрочем, происхождение нейронов из мезодермы до сих пор оспаривается, однако, есть работы, в которых сообщается о развитии нервных элементов из мезодермы у ряда примитивных беспозвоночных). Считается, что такой разнообразный нейрогенез является причиной многочисленности медиаторов нервных систем беспозвоночных.

    Диффузный тип нервной системы характерен и для трехслойных животных – плоских червей. Однако в связи с более сложным строением тела - появлением третьего зародышевого листка (мезодермы – «промежуточной кожи»), двусторонней симметрии, примитивных органов чувств – статоцистов (аналог органа равновесия), «глазков», обонятельных ямок (т.е. эволюцией рецепторного аппарата), - диффузная сеть усложняется. Из нее обособляются несколько продольных стволов, расположенных вдоль тела (рис. 16). В переднем конце животного эти стволы соединяются поперечными перемычками. Такая решетка нервных структур получила название ортогона. Стволы ортогона принципиально отличаются от нервных стволов (нервов) тем, что первые на всем своем протяжении содержат как нейроны, так и их отростки, а вторые состоят исключительно из отростков, а нейроны объединяются в ганглии.

    Общее направление эволюции нервного аппарата у низших червей – уменьшение числа нервных стволов и комиссур, уход нервного комплекса вглубь тела, возникновение церебрального (головного) ганглия (связано с развитием органов чувств, в частности статоциста, органов обоняния) – привело к внешнему архитектоническому упрощению нервного аппарата. Все перечисленное максимально выражено у немертин (сколециды - низшие черви), в мозгу которых появляются скопления ассоциативных клеток наподобие высших ассоциативных центров членистых животных (рис.17).

    Развитие диффузной нервной системы в систему ортогонального типа определяет следующие направления эволюции нервного аппарата:

    Централизация нервной системы.

    Интеграция функций организма – интегрирующая роль нервного аппарата возрастает по мере увеличения степени его собственной централизации.


    5.2. Ганглионарный тип нервной системы

    Появление этого типа нервной системы тесно связано с другим эволюционным нововведением – появлением сегментированных животных – кольчатых червей . Тело этих животных состоит из большого числа повторяющихся сегментов , или метамеров. В каждом сегменте имеется ганглий – парное скопление нервных клеток. Именно ганглии становятся основной анатомической структурой у большого количества таксономических групп животных. Кроме упомянутых кольчатых червей ганглионарный тип нервной системы типичен для двустворчатых, брюхоногих и головоногих моллюсков (рис. 18). У последних органы чувств, в частности глаза, достаточно хорошо развиты (рис. 19). Ганглионарный тип строения нервной системы типичен и для членистоногих.

    Ганглии представляют собой скопления нервных клеток, окруженных соединительнотканной капсулой (рис. 18,в ). Типичным для ганглиев является корковое строение : тела нейронов располагаются непосредственно под капсулой, направляя свои отростки внутрь ганглия. Центральная часть ганглия, состоящая из нервных отростков и глиальных элементов, называется нейропилем . Далее отростки нейронов выходят за пределы ганглия и формируют нервы и нервные стволы: комиссуры и коннективы. Комиссурами называют нервные стволы, объединяющие парные ганглии сегментов (если животное метамерно, например, кольчатые черви), или одноименные ганглии животных в значительной степени утративших метамерность (например, моллюски). Коннективы соединяют в цепочки ганглии соседних сегментов у метамерных животных или разноименные ганглии у неметамерных.

    В ходе эволюции ганглионарного типа нервной системы отмечаются следующие основные тенденции:

    Дальнейшая централизация и интеграция нервной системы. Она проявляется в

    o укорочении коннктив и комиссур

    o слиянии ганглиев (одноименных и разноименных). Ганглии, образовавшиеся путем слияния имеют более сложную структуру, чем их предшественники. Исчезает типичный нейропиль . Нейроны в ганглии занимают не только периферическое, но и центральное положение.

    o концентрации ганглиев вокруг жизненно важных центров животного: головной конец, гонада, мышцы ноги (у двустворчатых и брюхоногих моллюсков).

    появление специализированных отростков нейронов. Развитие сложных воспринимающих чувствительных структур и моторных, двигательных элементов животного, потребовало более точной и адресной иннервации. С возникновением дендритов и аксонов дальнейшее функционирование нервной системы стало осуществляться по принципу рефлекса .

    цефализация. У высокоргнанизованных в эволюционном отношении беспозвоночных животных (насекомые, головоногие моллюски) ганглии сливаются с образованием общей массы наподобие головного мозга позвоночных животных (рис. 19).

    Трубчатый тип нервной системы

    У позвоночных животных в основе формирования нервной системы лежит нервная трубка, расположенная с дорсальной стороны эмбриона. Передний конец трубки обычно расширен и образует головной мозг. Задняя цилиндрическая часть есть ни что иное, как спинной мозг. Существует гипотеза, согласно которой у предков хордовых животных имелась продольная дорсальная полоса первичного чувствующего эпителия. Затем в ходе эволюционного развития она стала погружаться в эктодерму, сформировав сначала открытый желоб, а потом образовав замкнутую нервную трубку. Эту гипотезу подтверждают картины раннего эмбриогенеза позвоночных животных (рис.20).


    В ходе эволюционного развития позвоночных трубчатая нервная система претерпевает ряд изменений.

    Во-первых, все дальнейшее развитие идет по пути цефализации – преимущественного развития головного мозга. Если у примитивно устроенного хордового животного – ланцетника – головной конец практически не развит, то уже у круглоротых имеется заметное утолщение нервной трубки в головном конце. Этот довольно примитивный головной мозг уже состоит из трех отделов: переднего, среднего и заднего. Передний отдел связан с развитием обоняния, средний – зрения, а задний с механорецепцией. У рыб выделяется также промежуточный мозг, достаточное развитие получает мозжечок. У амфибий значительно увеличивается передний мозг за счет развития полушарий, хорошо развит средний мозг, который у данной группы животных является высшим зрительным центром.

    Во-вторых, у высокоорганизованных позвоночных возникает новый отдел головного мозга – кора больших полушарий (плащ конечного мозга). Эта структура все больше подчиняет себе рефлексы низших отделов мозга, осуществляет за ними контроль. Данный этап получает название кортикализации (от лат. cortex – кора). У рептилий появляется кора головного мозга. Развитие головного мозга млекопитающих характеризуется усилением развития новой коры, появляется Варолиев мост, совершенствуются структуры среднего и продолговатого мозга (рис. 21). У высших млекопитающих ассоциативные зоны коры являются высшим центром интегративной деятельности в ЦНС.

    Таким образом, увеличение объема и усложнение структуры отделов головного мозга позвоночных тесно связаны с развитием сенсорных систем и интегративной деятельности. Постепенно, в зависимости от притока сенсорной информации, в существующих отделах мозга появляются филогенетически новые образования, которые берут под свой контроль все большее количества функций.

    Следует, однако, отметить, что и у позвоночных, в том числе и у высших, сохраняются черты предшествующих эволюционных типов нервных систем: ганглионарной и диффузной.

    Так в периферической нервной системе (соматической и вегетативной) чувствительные нейроны образуют ганглии (спинномозговые, симпатические и парасимпатические). При помощи ганглионарых структур в человеческом организме обеспечивается работа эволюционно древних (по сравнению с психикой) структур. Это, прежде всего, восприятие (чувствительность, рецепция) и автономная деятельность внутренних органов.

    Также в нашем организме сохранились и признаки диффузной нервной системы. Она образует третий отдел вегетативной нервной системы – метасимпатическую нервную систему (напомним, первые два отдела: симпатическая и парасимпатическая). Данный отдел обеспечивает автономную работу полых внутренних органов. Нейроны метасимпатической нервной системы образуют микроганглионарные скопления внутри стенок органов, координируя их деятельность (например, перистальтические движения кишечника, обеспечивающие продвижение пищи). Процессы, протекающие в диффузной нервной системе, могут видоизменяться под влиянием симпатической и парасимпатической нервных систем.

    Выделяют три основных типа структурной организации нервной системы : диффузный, узловой (ганглионарный) и трубчатый.

    Диффузная нервная система - наиболее древняя, характерна для кишечнополостных. Она представляет собой сетевидное соединение сравнительно равномерно разбросанных по телу нервных клеток. Примитивность такой системы состоит в отсутствии разделения ее на центральную и периферическую части, отсутствии длинных проводящих путей. Сеть относительно медленно проводит раздражение от нейрона к нейрону. Реакции организма на раздражение имеют неточный, расплывчатый характер. Однако множество связей между элементами диффузной нервной системы обеспечивает их широкую взаимозаменяемость и тем самым большую надежность функционирования.

    Узловая нервная система типична для червей моллюсков, членистоногих. Для нее характерна концентрация тел нервных клеток с образованием ганглиев (узлов). Тела нейронов, сосредоточенные в ганглиях, образуют центральную часть нервной системы. Резко возрастает роль нервных узлов головного отдела. Происходит дифференцировка нейронов в соответствии с различными выполняемыми функциями. Нейроны, по отросткам которых импульс поступает в нервные центры, называются центростремительными (чувствительными) или афферентными , а нейроны, по отросткам которых импульс от нервных центров направляется к исполнительным органам (мышцам, железе), - центробежными (двигательными) или эфферентными . Нервные клетки, воспринимающие возбуждение от одних нейронов и передающие его другим нервным клеткам, называются вставочными или интернейронами . Благодаря специализации нейронов, нервный импульс стал проводиться по определенным путям, что обеспечило быстроту, точность реакций организма. Такой качественно новый способ ответа организма называется рефлекторным типом реакции .

    Трубчатая нервная система характерна для хордовых. Такой тип системы обеспечивает наибольшую точность, быстроту и локальность ответных реакций. Для него характерна высшая степень концентрации нервных клеток. Центральная нервная система представлена трубчатым спинным и головным мозгом. В процессе эволюции усиливалось развитие головных отделов мозга, возрастала их регулирующая роль. В головном мозге высших позвоночных развился новый отдел - кора больших полушарий . Она собирает информацию от всех сенсорных и двигательных систем, осуществляет высший анализ и служит аппаратом условно-рефлекторной деятельности, а у человека - органом психической деятельности, мышления.

    «Платой» за централизацию нервной системы является высокая ее ранимость: повреждение центров приводит, как правило, к нарушению функций организма в целом.

    Читать далее

    Происхождение мозга Савельев Сергей Вячеславович

    § 20. Нервная система с радиальной симметрией

    Наиболее простой вариант строения нервной системы мы встречаем у стрекающих (кишечнополостных). Как уже говорилось выше, их нервная система построена по диффузному типу. Клетки образуют пространственную сеть, которая расположена в мезоглее (рис. II-4, а). Небольшое скопление нервных клеток в окологлоточной области образует подобие распределённого нервного центра. Он интегрирует все несложные реакции тела кишечнополостных и является эволюционным предшественником ганглиозной нервной системы. В окологлоточном нервном кольце формируются параллельные ганглии, описанные в главе (см. рис. I-16). По-видимому, этот тип строения нервной сети был исходным для всех групп животных.

    При всей кажущейся простоте диффузный тип нервной системы обеспечивает довольно сложное поведение кишечнополостных. Хорошо известно, что раки-отшельники используют актиний для защиты от хищников. Они выбирают наиболее подходящих особей и пересаживают их себе на раковину. Классическим примером является симбиоз актиний и рака-отшельника. Однако мало известно, что сами актинии также могут выбирать наиболее подходящую поверхность раковины и перемещаться на неё. Иначе говоря, актинии такие же активные, хотя и бессознательные, участники симбиоза, как и раки-отшельники (Холодковский, 1914; Meglitsch, Schram, 1991).

    В скромных рамках диффузной нервной системы известно необычайно большое количество вариантов строения. Их всех объединяют радиальная или изоморфная симметрия и общая тенденция к объединению нервных клеток в некие скопления. С момента появления пронейральной сети у губкоподобных организмов началась дифференциальная концентрация нервных элементов. В начале эволюции многоклеточных животных появилось бесконечное разнообразие вариантов строения нервной системы, которые реализовались у кишечнополостных и частично сохранились до нашего времени (см. рис. II-4).

    Нервные клетки концентрировались различными способами. Самым простым способом интеграции нервных сетей стало окологлоточное нервное кольцо. Его появление вполне оправдано тем, что оно находилось на границе поступления пищи в организм кишечнополостных. Пища была тем ведущим стимулом, который определял и оценивал успех морфологических изменений нервной системы. Тот, кто мог эффективнее контролировать поступление пищи, увеличивал свой метаболизм и репродуктивные возможности. Самым простым движением, позволяющим проиллюстрировать действие диффузной нервной системы, является реакция на механическое раздражение. Пресноводная гидра (Pelmatohydra oligactis) при малейшем раздражении сжимается в микроскопический комочек. Это происходит за счёт расположенных продольно в эктодерме и поперечно в энтодерме сократимых белков. Кроме генерализованной реакции, кишечнополостные могут дифференциально пользоваться отдельными щупальцами или их группами. Гидры способны передвигаться, чередуя при переворотах опору на подошву и ротовое отверстие.

    Тем не менее диффузная сеть с окологлоточным нервным кольцом была относительно медленно действующим устройством. Измеренная проводимость по нервной сети кишечнополостных составляет не более 5-20 см/с. Этого явно не хватает животным размером более 5 см, поэтому уже у актиний выделились участки нервной сети с высокой скоростью проведения (см. рис. II-4, в). В некоторых случаях она достигает

    см/с, что делает актиний изощрёнными охотниками за значительно более эволюционно продвинутыми позвоночными. Окологлоточное нервное кольцо было явным достижением, но оно не могло дифференциально управлять всем телом или обеспечить контроль за свободным плаванием.

    Среди предков современных одиночных актиний явно были свободноплавающие существа. На это указывает двойная нервная сеть в их теле (см. рис. II-4, б). Одна диффузная сеть расположена под эктодермой в мезоглее и ничем не отличается от таковой у других кишечнополостных (см. рис. II-4, а). Другая нервная сеть лежит в той же мезоглее, но уже около энтодермы. Они связаны между собой только в зоне окологлоточного нервного кольца, которое начинает играть как интегрирующую, так и разделяющую роль. По-видимому, такие двойные сети возникли на заре эволюции нервной системы и были нужны для активного свободного плавания. Животное с автономной «эктодермальной» сетью могло активно двигаться в толще воды. Сокращение эктодермальных клеток позволяло животному перемещаться, не вовлекая в этот процесс пищеварительную систему.

    Рис. II-4. Предполагаемые первые этапы (показано стрелками) усложнения строения нервной системы кишечнополостных с радиальной симметрией.

    а - однослойная сеть примитивных гидроидов; б - двойная нервная сеть актиний; в - нервная сеть актиний со скоростными проводящими цепями клеток; г - нервная сеть восьмилучевого полипа; д - нервный аппарат радиально-комиссурального типа.

    Не исключено, что мезоглея была у этих существ намного толще и рыхлее. Пищеварительная нервная сеть с энтодермальными сократимыми клетками функционировала относительно автономно, перемещая пищевые частицы без эктодермальных сокращений. Такой самодвижущийся пылесос мог быть крайне эффективным при избытке мелких пищевых частиц. Эволюционные преимущества подвижных фильтраторов хорошо известны, поскольку усатые киты являются самыми крупными животными на планете.

    Совершенно иная нервная система у свободноплавающих сцифоидных медуз. Они преимущественно хищники с диффузной нервной системой, которая интегрируется околоротовым круговым скоплением нейронов и несколькими нервными кольцами в зонтике. Эти существа имеют интересные высокоспециализированные участки нервной системы - ропалии. Это небольшие скопления нейронов по краям зонтика. Ропалии могут содержать статоцисты, или светочувствительные глазки. В статоцистах конкреции различной природы образуют давящий на нейроны «камушек». Он позволяет определять направление на гравитационный центр Земли и ориентировать тело в воде. Глазки измеряют освещённость, а движущиеся волны механически влияют на нервную сеть, что позволяет медузам выбирать направление движения. Подобные нервные образования не смогли стать значимыми центрами для интеграции поведения кишечнополостных, но были первыми специализированными органами чувств. Подобные примитивные рецепторные системы неоднократно возникали в эволюции, что подтверждается разнообразием их структурной организации при общей убогости рецепторных возможностей.

    Можно предположить, что потенциальный предковый вариант строения нервной системы беспозвоночных выглядел как некое кишечнополостное со скоростными тяжами проведения нервных клеток (см. рис. II-4, в). Если допустить эволюционное продолжение концентрации нервных клеток, то из такой морфологической организации с равной вероятностью могла появиться нервная система двух типов строения (см. рис. II-4, г, д). Эти типы различаются только по туловищным комиссурам, которые соединяют продольные нервные стволы.

    Окологлоточное нервное кольцо имеет примерно одинаковое строение и интегрирует активность всей нервной сети животного. В хорошо известном плане строения радиально-симметричной нервной системы многих современных кишечнополостных нет поперечных комиссур, соединяющих нервные стволы. Этот тип мог эволюционировать по пути сокращения числа нервных стволов. При этом, по-видимому, возникали самые оригинальные варианты симметрии нервной системы. Примером может служить нервная система нематод (рис. II-5, б). Она представлена 4 параллельными стволами, которые соединяются только окологлоточным нервным кольцом. Других комиссур в глоточной зоне и теле круглых червей нет. Важно подчеркнуть, что 4 нервных ствола нематод расположены симметрично, но вопреки ожиданиям в дорсальном, вентральном и латеральном положении (см. рис. 11-5, б), 4 нервных ствола иннервируют треугольный рот и не имеют отростков, проникающих в мышечные клетки. Наоборот, мышечные клетки образуют отростки, которые оканчиваются на дорсальном и вентральном нервных стволах, идущих вдоль тела. Каждая мышечная клетка имеет несколько таких отростков, а сократимые белки локализованы в дистальном участке цитоплазмы. По этим отросткам проходит нервный сигнал, который и заставляет сокращаться группы мышечных клеток.

    Вполне вероятно, что у нематод сохранился древнейший механизм «информирования» клеток организма co стороны нервной системы. Мышечные клетки сами заботятся об источнике информации, пригодном для повышения метаболизма. Такой тип нервно-мышечных связей крайне примитивен и претендует на эволюционную первичность, что косвенно подтверждает высказанную ранее гипотезу происхождения нервных клеток. Нематоды многочисленны, но не разнообразны по строению органов чувств. В основном это внешние и внутренние механорецепторы, хеморецепторы (чувствительные ямки, сосочки) и простые глазки. Механорецепторы специализированы на мужские сенсорные органы и спикулы, головные и соматические щетинки. Однако это пример крайней специализации, который показывает, что наиболее эволюционно перспективным был «комиссуральный» путь (см. рис. II-5, в).

    Комиссуры, посегментно связывающие продольные нервные стволы, дают существенные преимущества в дифференциальной активности отдельных участков тела. Вполне возможно, что комиссуральные нервные стволы сформировались ещё на уровне гипотетических кишечнополостных с радиальной симметрией. Множественные нервные стволы таких животных могли иметь комиссуры, которые создавали развитую пространственную нервную сеть. Неподвижным особям вполне достаточно бескомиссурного варианта (см. рис. II-5, а), поэтому комиссуры свидетельствуют скорее о подвижном образе жизни. Сегментированная сеть носила вполне практический характер и использовалась для перистальтического движения. Животное двигалось в результате распространения кольцевых перистальтических волн по телу назад относительно движения. Дифференциальное управление такими полостями и окружающими их мышцами возможно только при наличии повторяющихся нейральных сегментов. В таком сегменте должен быть автономный центр, управляющий мышцами, - ганглий. У радиально-симметричного животного их может быть несколько, у билатерально-симметричного - 2 или 4. Такие ганглии расположены в узлах пересечения нервных стволов и поперечных комиссур.

    Пересечения постепенно трансформируются в контактные узлы, а затем и в полноценные ганглии. Появление дополнительных периферических центров позволяет им принять на себя часть забот об управлении телом животного. Сегментарные комиссуры с ганглиями являются основным условием возникновения внутри тела специализированных полостей и целома. Без развитой посегментной иннервации септально-целомические конструкции не имели бы биологического смысла. Их использование для перистальтических движений было бы невозможно. Развитая иннервация позволяет деформировать их в широких диапазонах и развивать большие усилия при различных способах перистальтического движения. Следовательно, комиссуры и узловые ганглии создали у радиально-симметричного животного все предпосылки для возникновения сегментарности и билатеральной симметрии.

    Радиально-симметричное животное, похожее на трубу с пробегающими по ней волнами, не самый лучший пловец. Этот тип движения очень эффективен в почве, но в воде преимущество получают животные с меньшим числом осей симметрии. Плоскотелые животные с волнообразными движениями тела двигаются быстрее, а их энергетические затраты ниже. Это касается как придонной зоны, так и толщи воды. Замена радиальной симметрии на билатеральную была делом очень небольшого времени. По-видимому, уменьшение числа продольных нервных стволов происходило путём их слияния. Стволы сближались и сливались, как это происходит при метаморфозе насекомых. Мы не знаем, из какой радиальной системы складывалась билатеральная нервная система, но маловероятно, что в ней было нечётное число нервных стволов. В конечном итоге слияние продольных стволов привело к возникновению билатерально-организованной нервной системы. Вероятнее всего, билатеральность сложилась в придонном слое. Древнее свободноплавающее существо перешло к придонному образу жизни. Успешно передвигаться внутри придонного слоя могла и радиально-симметричная трубка. Однако более эффективно плавать или ползать по поверхности может билатерально-симметричное существо. Такой тип организации нервной системы широко распространён и среди современных свободноживущих плоских червей - турбеллярий. Встречаются варианты строения с 4 и 2 параллельными нервными стволами (см. рис. II-5, г, е).

    Рис. II-5. Общий вид и сечения основных вариантов строения нервной системы кишечнополостных и червей.

    а - нервная сеть восьмилучевого полипа; б - нервная сеть нематод; в - нервный аппарат радиально-комиссурального типа; г, е - нервная система тубеллярий; д - нервная система печеночного сосальщика. Синим цветом на сечениях обозначены нервные стволы.

    Из книги Допинги в собаководстве автора Гурман Э Г

    3.2. НЕРВНАЯ СИСТЕМА И ПОВЕДЕНИЕ В поведенческом акте участвуют многие системы организма. Он реализуется с помощью аппарата движений, деятельность которого тесно связана с различными функциями организма (дыханием, кровообращением, терморегуляцией и др.). Управление

    Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

    Нервная система Как известно, нервная система впервые появляется у низших многоклеточных беспозвоночных. Возникновение нервной системы - важнейшая веха в эволюции животного мира, и в этом отношении даже примитивные многоклеточные беспозвоночные качественно

    Из книги Служебная собака [Руководство по подготовке специалистов служебного собаководства] автора Крушинский Леонид Викторович

    Центральная нервная система В соответствии со сложной и высокодифференцированной организацией двигательного аппарата находится и сложное строение центральной нервной системы насекомых, которую, однако, мы можем здесь охарактеризовать лишь в самых общих чертах.Как и у

    Из книги Краткая история биологии [От алхимии до генетики] автора Азимов Айзек

    9. Нервная система Общие понятия. Нервная система является очень сложной и своеобразной по своему строению и функциям системой организма. Ее назначение - устанавливать и регулировать взаимоотношение органов и систем в организме, связывать все функции организма в

    Из книги Гомеопатическое лечение кошек и собак автора Гамильтон Дон

    Глава 10 Нервная система ГипнотизмДругая разновидность заболеваний, которые не подпадают под теорию Пастера, - это заболевания нервной системы. Такие заболевания смущали и пугали человечество испокон веков. Гиппократ подходил к ним рационалистично, однако большинство

    Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

    Глава XIII Нервная система Функции У нервной системы живых существ имеются две основные функции. Первая - сенсорное восприятие, благодаря которому мы воспринимаем и постигаем окружающий мир. По центростремительным чувствительным нервам импульсы от всех пяти органов

    Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

    8.3. Некоторые эмоции, вызываемые цветом и симметрией Если хищники необычайно остро распознают движущиеся предметы, то зрение приматов специализировано на распознавание самых слабых различий в форме и строении. В поисках пищи важно распознавание цвета, и в отличии от

    Из книги Мозг, разум и поведение автора Блум Флойд Э

    Из книги Происхождение мозга автора Савельев Сергей Вячеславович

    Вегетативная нервная система Некоторые общие принципы организации сенсорных и двигательных систем весьма пригодятся нам при изучении систем внутренней регуляции. Все три отдела вегетативной (автономной) нервной системы имеют «сенсорные» и «двигательные» компоненты.

    Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

    § 11. Нервная система беспозвоночных У беспозвоночных диффузно-ганглиозная нервная система с выраженными головными и туловищными ганглиями. Туловищные ганглии обеспечивают местный контроль над вегетативными функциями и моторной активностью. Головные ганглии содержат

    Из книги автора

    § 12. Нервная система позвоночных Нервная система позвоночных построена на принципах вероятностного развития, дублирования, избыточности и индивидуальной изменчивости. Это не означает, что в мозге позвоночных нет места генетической детерминации развития или

    Из книги автора

    § 21. Билатеральная нервная система Появление билатеральной симметрии стало переломом в эволюции нервной системы. Это не означает, что билатеральность лучше радиальной симметрии. Скорее наоборот. Из-за того что в далёком прошлом билатеральная симметрия была утрачена, мы

    Из книги автора

    § 22. Нервная система членистоногих Организация нервной системы членистоногих и сходных с ними групп может существенно варьировать, но в пределах общего плана строения. Рисунок нервной системы дневной бабочки (Lepidoptera) довольно точно отражает типичное расположение

    Из книги автора

    § 23. Нервная система моллюсков Наибольший морфофункциональный контраст представляют собой организация нервной системы головоногих и двустворчатых моллюсков (рис. II-9; II-10, а). У двустворчатых моллюсков есть парные головные, висцеральные и педальные ганглии, соединённые

    Из книги автора

    § 43. Нервная система и органы чувств птиц Нервная система птиц состоит из центрального и периферического отделов. Головной мозг птиц крупнее, чем у любых современных представителей рептилий. Он заполняет полость черепа и имеет округлую форму при небольшой длине (см. рис.

    Из книги автора

    7.5. Нервная ткань Нервная ткань представлена двумя типами клеток: нейронами и нейроглией.Нейроны способны воспринимать раздражение и передавать информацию в виде электрических импульсов. На основе этих свойств нейронов у животных сформировалась нервная система –

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то