Классическая формула вычисления вероятности. Основы теории вероятностей для актуариев

Наш ответ

Выбор правильной ставки зависит не только от интуиции, спортивных знаний, букмекерских коэффициентов, но и от коэффициента вероятности события. Возможность рассчитать подобный показатель в беттинге является залогом успеха в прогнозировании предстоящего события, на который предполагается осуществление ставки.
В букмекерских конторах существует три вида коэффициентов (подробней в статье ), от разновидности которых зависит, как рассчитать вероятность события игроку.

Десятичные коэффициенты

Расчет вероятности события в таком случае происходит по формуле: 1/коэф.соб. = в.и, где коэф.соб. – коэффициент события, а в.и – вероятность исхода. Например, берем коэффициент события 1,80 при ставке в один доллар, совершая математическое действие по формуле, игрок получает, что вероятность исхода события по версии букмекера 0,55 процента.

Дробные коэффициенты

При использовании дробных коэффициентов формула расчета вероятности будет другая. Так при коэффициенте 7/2, где первая цифра означает возможный размер чистой прибыли, а вторая размер необходимой ставки, для получения этой прибыли, уравнение будет выглядеть следующим образом: зн.коэф/ на сумму зн.коэф и чс.коэф = в.и. Здесь зн.коэф – знаменатель коэффициента, чс.коэф – числитель коэффициента, в.и – вероятность исхода. Таким образом, для дробного коэффициента 7/2 уравнение выглядит как 2 / (7+2) = 2 / 9 = 0.22, следовательно, 0,22 процента вероятность исхода события по версии букмекерской конторы.

Американские коэффициенты

Американские коэффициенты мало популярны у игроков и, как правило, используются исключительно в США, обладая сложной и запутанной структурой. Для ответа на вопрос: «Как посчитать вероятность события таким способом?», нужно знать, что подобные коэффициенты могут быть отрицательными и положительными.

Коэффициент со знаком «-», например -150, показывает, что игроку для получения чистой прибыли в 100 долларов необходимо совершить ставку в 150 долларов. Вероятность события рассчитывается исходя из формулы, где нужно разделить отрицательный коэффициент на сумму отрицательного коэффициента и 100. Выглядит это на примере ставки -150, так (-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0.6, где 0,6 умножается на 100 и исход вероятности события составляет 60 процентов. Эта же формула подходит и для положительных американских коэффициентов.

Теория вероятности - довольно обширный самостоятельный раздел математики. В школьном курсе теория вероятности рассматривается очень поверхностно, однако в ЕГЭ и ГИА имеются задачи на данную тему. Впрочем, решать задачи школьного курса не так уж сложно (по крайней мере то, что касается арифметических операций) - здесь не нужно считать производные, брать интегралы и решать сложные тригонометрические преобразования - главное, уметь обращаться с простыми числами и дробями.

Теория вероятности - основные термины

Главные термины теории вероятности - испытание, исход и случайное событие. Испытанием в теории вероятности называют эксперимент - подбросить монету, вытянуть карту, провести жеребьевку - все это испытания. Результат испытания, как вы уже догадались, называется исходом.

А что же такое случайность события? В теории вероятности предполагается, что испытание проводится ни один раз и исходов много. Случайным событием называют множество исходов испытания. Например, если вы бросаете монету, может произойти два случайных события - выпадет орел или решка.

Не путайте понятия исход и случайное событие. Исход - это один результат одного испытания. Случайное событие - это множество возможных исходов. Существует, кстати, и такой термин, как невозможное событие. Например, событие "выпало число 8" на стандартном игровом кубике является невозможным.

Как найти вероятность?

Все мы примерно понимаем, что такое вероятность, и довольно часто используем данное слово в своем лексиконе. Кроме того, мы можем даже делать некоторые выводы относительно вероятности того или иного события, например, если за окном снег, мы с большой вероятностью можем сказать, что сейчас не лето. Однако как выразить данное предположение численно?

Для того чтобы ввести формулу для нахождения вероятности, введем еще одно понятие - благоприятные исход, т. е. исход, который является благоприятным для того или иного события. Определение довольно двусмысленное, конечно, однако по условию задачи всегда понятно, какой из исходов благоприятный.

Например: В классе 25 человек, трое из них Кати. Учитель назначает дежурной Олю, и ей нужен напарник. Какова вероятность того, что напарником станет Катя?

В данном примере благоприятный исход - напарник Катя. Чуть позже мы решим эту задачу. Но сначала введем с помощью дополнительного определения формулу для нахождения вероятности.

  • Р = А/N, где P - вероятность, A - число благоприятных исходов, N - общее количество исходов.

Все школьные задачи крутятся вокруг одной этой формулы, и главная трудность обычно заключается в нахождении исходов. Иногда их найти просто, иногда - не очень.

Как решать задачи на вероятность?

Задача 1

Итак, теперь давайте решим поставленную выше задачу.

Число благоприятных исходов (учитель выберет Катю) равно трем, ведь Кать в классе три, а общих исходов - 24 (25-1, ведь Оля уже выбрана). Тогда вероятность равна: P = 3/24=1/8=0,125. Таким образом, вероятность того, что напарником Оли окажется Катя, составляет 12,5%. Несложно, правда? Давайте разберем кое-что посложней.

Задача 2

Монету бросили два раза, какова вероятность выпадения комбинации: один орел и одна решка?

Итак, считаем общие исходы. Как могут выпасть монеты - орел/орел, решка/решка, орел/решка, решка/орел? Значит, общее число исходов - 4. Сколько благоприятных исходов? Два - орел/решка и решка/орел. Таким образом, вероятность выпадения комбинации орел/решка равна:

  • P = 2/4=0,5 или 50 процентов.

А теперь рассмотрим такую задачу. У Маши в кармане 6 монет: две - номиналом 5 рублей и четыре - номиналом 10 рублей. Маша переложила 3 монеты в другой карман. Какова вероятность того, что 5-рублевые монеты окажутся в разных карманах?

Для простоты обозначим монеты цифрами - 1,2 - пятирублевые монеты, 3,4,5,6 - десятирублевые монеты. Итак, как могут лежать монеты в кармане? Всего есть 20 комбинаций:

  • 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

На первый взгляд может показаться, что некоторые комбинации пропали, например, 231, однако в нашем случае комбинации 123, 231 и 321 равнозначны.

Теперь считаем, сколько у нас благоприятных исходов. За них берем те комбинации, в которых есть либо цифра 1, либо цифра 2: 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256. Их 12. Таким образом, вероятность равна:

  • P = 12/20 = 0,6 или 60%.

Задачи по теории вероятности, представленные здесь, довольно простые, однако не думайте, что теория вероятности - это простой раздел математики. Если вы решите продолжать образование в вузе (за исключением гуманитарных специальностей), у вас обязательно будут пары по высшей математике, на которых вас ознакомят с более сложными терминами данной теории, и задачи там будут куда сложнее.

Задачи на классическое определение вероятности.
Примеры решений

На третьем уроке мы рассмотрим различные задачи, касающиеся непосредственного применения классического определения вероятности. Для эффективного изучения материалов данной статьи рекомендую ознакомиться с базовыми понятиями теории вероятностей и основами комбинаторики . Задача на классическое определение вероятности с вероятностью, стремящейся к единице, будет присутствовать в вашей самостоятельной/контрольной работе по терверу, поэтому настраиваемся на серьёзную работу. Вы спросите, чего тут серьёзного? …всего-то одна примитивная формула . Предостерегаю от легкомыслия – тематические задания достаточно разнообразны, и многие из них запросто могут поставить в тупик. В этой связи помимо проработки основного урока, постарайтесь изучить дополнительные задачи по теме, которые находятся в копилке готовых решений по высшей математике . Приёмы решения приёмами решения, а «друзей» всё-таки «надо знать в лицо», ибо даже богатая фантазия ограничена и типовых задач тоже хватает. Ну а я постараюсь в хорошем качестве разобрать максимальное их количество.

Вспоминаем классику жанра:

Вероятность наступления события в некотором испытании равна отношению , где:

– общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

И сразу незамедлительный пит-стоп. Понятны ли вам подчёркнутые термины? Имеется ввиду чёткое, а не интуитивное понимание. Если нет, то всё-таки лучше вернуться к 1-й статье по теории вероятностей и только после этого ехать дальше.

Пожалуйста, не пропускайте первые примеры – в них я повторю один принципиально важный момент, а также расскажу, как правильно оформлять решение и какими способами это можно сделать:

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

– извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30 шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: – из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
– вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность, на которой я уже заострял внимание в первой статье по теории вероятностей . Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

– из урны будет извлечён красный шар;
– из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию – 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

В принципе, ответ можно записать и подробнее, но лично я привык ставить туда только числа – по той причине, что когда начинаешь «штамповать» задачи сотнями и тысячами, то стремишься максимально сократить запись решения. К слову, о краткости: на практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
– вероятность того, то из урны будет извлечён белый шар;
– вероятность того, то из урны будет извлечён красный шар;
– вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Однако если в условии несколько пунктов, то решение зачастую удобнее оформить первым способом, который отнимает чуть больше времени, но зато всё «раскладывает по полочкам» и позволяет легче сориентироваться в задаче.

Разминаемся:

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?

Выберите целесообразный вариант оформления и сверьтесь с образцом внизу страницы.

В простейших примерах количество общих и количество благоприятствующих исходов лежат на поверхности, но в большинстве случаев картошку приходится выкапывать самостоятельно. Каноничная серия задач о забывчивом абоненте:

Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них – ноль, а другая – нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль – это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр – ноль, а другая цифра – нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:
01, 03, 05, 07, 09
10, 30, 50, 70, 90

И подсчитываем их – всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
– вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Десятичные дроби в теории вероятностей смотрятся вполне уместно, но можно придерживаться и традиционного вышматовского стиля, оперируя только обыкновенными дробями.

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин-код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр – то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже – бОльшее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;
б) не более четырёх очков;
в) от 3 до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где – цифра, выпавшая на 1-м кубике, – цифра, выпавшая на 2-м кубике. Например:

– на первом кубике выпало 3 очка, на втором – 5 очков, сумма очков: 3 + 5 = 8;
– на первом кубике выпало 6 очков, на втором – 1 очко, сумма очков: 6 + 1 = 7;
– на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую – две «шестёрки».

а) Рассмотрим событие: – при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
– искомая вероятность.

б) Рассмотрим событие: – выпадет не более 4 очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия – подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
– вероятность того, что выпадет не более 4 очков.

в) Рассмотрим событие: – выпадет от 3 до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : – выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
– вероятность того, что выпадет меньше трёх или больше 9 очков.

Помимо прямого перечисления и подсчёта исходов, в ходу также различные комбинаторные формулы . И снова эпичная задача про лифт:

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах
б) двое выйдут на одном этаже;
в) все выйдут на одном этаже.

Наше увлекательное занятие подошло к концу, и напоследок ещё раз настоятельно рекомендую если не прорешать, то хотя бы разобраться в дополнительных задачах на классическое определение вероятности . Как я уже отмечал, «набивка руки» тоже имеет значение!

Далее по курсу – Геометрическое определение вероятности и Теоремы сложения и умножения вероятностей и… везения в главном!

Решения и ответы :

Задача 2: Решение : 30 – 5 = 25 холодильников не имеют дефекта.

– вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4 мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):
7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558
Благоприятствующий исход один (правильный пин-код).
Таким образом, по классическому определению:
– вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2 кубиках.

а) Рассмотрим событие: – при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов, по классическому определению вероятности:
, т.е. это событие является невозможным.

б) Рассмотрим событие: – при броске двух игральных костей произведение очков окажется не менее 20. Данному событию благоприятствуют следующие исходы:

Итого: 8
По классическому определению:
– искомая вероятность.

в) Рассмотрим противоположные события:
– произведение очков будет чётным;
– произведение очков будет нечётным.
Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.
По классическому определению вероятности:
Противоположные события образуют полную группу, поэтому:
– искомая вероятность.

Ответ :

Задача 8: Решение : вычислим общее количество исходов: способами могут упасть 10 монет.
Другой путь: способами может упасть 1-я монета и способами может упасть 2-я монета и и способами может упасть 10-я монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: – на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: – на 9 монетах выпадет орёл, а на одной – решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: – орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :

Возникновение теории вероятностей относится к середине XVII века, когда математики заинтересовались задачами, поставленными азартными игроками и до сих пор не изучавшимися в математике. В процессе решения этих задач выкристаллизовались такие понятия, как вероятность и математическое ожидание. При этом ученые того времени – Гюйгенс (1629-1695), Паскаль (1623-1662), Ферма (1601-1665) и Бернулли (1654-1705) были убеждены, что на базе массовых случайных событий могут возникать четкие закономерности. И только состояние естествознания привело к тому, что азартные игры еще долго продолжали оставаться тем почти единственным конкретным материалом, на базе которого создавались понятия и методы теории вероятностей. Это обстоятельство накладывало отпечаток и на формально-математический аппарат, посредством которого решались возникавшие в теории вероятностей задачи: он сводился исключительно к элементарно-арифметическим и комбинаторным методам.

Серьезные требования со стороны естествознания и общественной практики (теория ошибок наблюдения, задачи теории стрельбы, проблемы статистики, в первую очередь статистики народонаселения) привели к необходимости дальнейшего развития теории вероятностей и привлечения более развитого аналитического аппарата. Особенно значительную роль в развитии аналитических методов теории вероятностей сыграли Муавр (1667-1754), Лаплас (1749-1827), Гаусс (1777-1855), Пуассон (1781-1840). С формально-аналитической стороны к этому же направлению примыкает работа создателя неевклидовой геометрии Лобачевского (1792-1856), посвященная теории ошибок при измерениях на сфере и выполненная целью установления геометрической системы, господствующей во вселенной.

Теория вероятностей, подобно другим разделам математики, развилась из потребностей практики: в абстрактной форме она отражает закономерности, присущие случайным событиям массового характера. Эти закономерности играют исключительно важную роль в физике и других областях естествознания, разнообразнейших технических дисциплинах, экономике, социологии, биологии. В связи с широким развитием предприятий, производящих массовую продукцию, результаты теории вероятностей стали использоваться не только для браковки уже изготовленной продукции, но и для организации самого процесса производства (статистический контроль в производстве).

Основные понятия теории вероятностей

Теория вероятностей объясняет и исследует различные закономерности, которым подчинены случайные события и случайные величины. Событием является любой факт, который можно констатировать в результате наблюдения или опыта. Наблюдением или опытом называют реализацию определенных условий, в которых событие может состояться.

Опыт означает, что упомянутый комплекс обстоятельств создан сознательно. В ходе наблюдения сам наблюдающий комплекс этих условий не создает и не влияет на него. Его создают или силы природы или другие люди.

Что нужно знать, чтобы определять вероятности событий

Все события, за которыми люди наблюдают или сами создают их, делятся на:

  • достоверные события;
  • невозможные события;
  • случайные события.

Достоверные события наступают всегда, когда создан определенный комплекс обстоятельств. Например, если работаем, то получаем за это вознаграждение, если сдали экзамены и выдержали конкурс, то достоверно можем рассчитывать на то, что включены в число студентов. Достоверные события можно наблюдать в физике и химии. В экономике достоверные события связаны с существующим общественным устройством и законодательством. Например, если мы вложили деньги в банк на депозит и выразили желание в определенный срок их получить, то деньги получим. На это можно рассчитывать как на достоверное событие.

Невозможные события определенно не наступают, если создался определенный комплекс условий. Например, вода не замерзает, если температура составляет плюс 15 градусов по Цельсию, производство не ведется без электроэнергии.

Случайные события при реализации определенного комплекса условий могут наступить и могут не наступить. Например, если мы один раз подбрасываем монету, герб может выпасть, а может не выпасть, по лотерейному билету можно выиграть, а можно не выиграть, произведенное изделие может быть годным, а может быть бракованным. Появление бракованного изделия является случайным событием, более редким, чем производство годных изделий.

Ожидаемая частота наступления случайных событий тесно связана с понятием вероятности. Закономерности наступления и ненаступления случайных событий исследует теория вероятностей.

Если комплекс нужных условий реализован лишь один раз, то получаем недостаточно информации о случайном событии, поскольку оно может наступить, а может не наступить. Если комплекс условий реализован много раз, то появляются известные закономерности. Например, никогда невозможно узнать, какой кофейный аппарат в магазине потребует очередной покупатель, но если известны марки наиболее востребованных в течение длительного времени кофейных аппаратов, то на основе этих данных возможно организовать производство или поставки, чтобы удовлетворить спрос.

Знание закономерностей, которым подчинены массовые случайные события, позволяет прогнозировать, когда эти события наступят. Например, как уже ранее отмечено, заранее нельзя предусмотреть результат бросания монеты, но если монета брошена много раз, то можно предусмотреть выпадение герба. Ошибка может быть небольшой.

Методы теории вероятностей широко используются в различных отраслях естествознания, теоретической физике, геодезии, астрономии, теории автоматизированного управления, теории наблюдения ошибок, и во многих других теоретических и практических науках. Теория вероятностей широко используется в планировании и организации производства, анализе качества продукции, анализе технологических процессов, страховании, статистике населения, биологии, баллистике и других отраслях.

Случайные события обычно обозначают большими буквами латинского алфавита A, B, C и т.д.

Случайные события могут быть:

  • несовместными;
  • совместными.

События A, B, C … называют несовместными , если в результате одного испытания может наступить одно из этих событий, но невозможно наступление двух или более событий.

Если наступление одного случайного события не исключает наступление другого события, то такие события называют совместными . Например, если с ленты конвейера снимают очередную деталь и событие А означает «деталь соответствует стандарту», а событие B означает «деталь не соответствует стандарту», то A и B – несовместные события. Если событие C означает «взята деталь II сорта», то это событие совместно с событием A, но несовместно с событием B.

Если в каждом наблюдении (испытании) должно произойти одно и только одно из несовместных случайных событий, то эти события составляют полное множество (систему) событий .

Достоверным событием является наступление хотя бы одного события из полного множества событий.

Если события, образующие полное множество событий, попарно несовместны , то в результате наблюдения может наступить только одно из этих событий. Например, студент должен решить две задачи контрольной работы. Определенно произойдет одно и только одно из следующих событий:

  • будет решена первая задача и не будет решена вторая задача;
  • будет решена вторая задача и не будет решена первая задача;
  • будут решены обе задачи;
  • не будет решена ни одна из задач.

Эти события образуют полное множество несовместных событий .

Если полное множество событий состоит только из двух несовместных событий, то их называют взаимно противоположными или альтернативными событиями.

Событие, противоположное событию , обозначают . Например, в случае одного подбрасывания монеты может выпасть номинал () или герб ().

События называют равновозможными , если ни у одного из них нет объективных преимуществ. Такие события также составляют полное множество событий. Это значит, что в результате наблюдения или испытания определенно должно наступить по меньшей мере одно из равновозможных событий.

Например, полную группу событий образуют выпадение номинала и герба при одном подбрасывании монеты, наличие на одной печатной странице текста 0, 1, 2, 3 и более 3 ошибок.

Определения и свойства вероятностей

Классическое определение вероятности. Возможностью или благоприятным случаем называют случай, когда при реализации определённого комплекса обстоятельств события А происходят. Классическое определение вероятности предполагает напрямую вычислить число благоприятных случаев или возможностей.

Классическая и статистическая вероятности. Формулы вероятностей: классической и статистической

Вероятностью события А называют отношение числа благоприятных этому событию возможностей к числу всех равновозможных несовместных событий N , которые могут произойти в результате одного испытания или наблюдения. Формула вероятности события А :

Если совершенно понятно, о вероятности какого события идёт речь, то тогда вероятность обозначают маленькой буквой p , не указывая обозначения события.

Чтобы вычислить вероятность по классическому определению, необходимо найти число всех равновозможных несовместных событий и определить, сколько из них благоприятны определению события А .

Пример 1. Найти вероятность выпадения числа 5 в результате бросания игральной кости.

Решение. Известно, что у всех шести граней одинаковая возможность оказаться наверху. Число 5 отмечено только на одной грани. Число всех равновозможных несовместных событий насчитывается 6, из них только одна благоприятная возможность выпадения числа 5 (М = 1). Это означает, что искомая вероятность выпадения числа 5

Пример 2. В ящике находятся 3 красных и 12 белых одинаковых по размеру мячиков. Не глядя взят один мячик. Найти вероятность, что взят красный мячик.

Решение. Искомая вероятность

Найти вероятности самостоятельно, а затем посмотреть решение

Пример 3. Бросается игральная кость. Событие B - выпадение чётного числа. Вычислить вероятность этого события.

Пример 5. В урне 5 белых и 7 чёрных шаров. Случайно вытаскивается 1 шар. Событие A - вытянут белый шар. Событие B - вытянут чёрный шар. Вычислить вероятности этих событий.

Классическую вероятность называют также априорной вероятностью, так как её рассчитывают перед началом испытания или наблюдения. Из априорного характера классической вероятности вытекает её главный недостаток: только в редких случаях уже перед началом наблюдения можно вычислить все равновозможные несовместные события и в том числе благоприятные события. Такие возможности обычно возникают в ситуациях, родственных играм.

Сочетания. Если последовательность событий не важна, число возможных событий вычисляют как число сочетаний:

Пример 6. В группе 30 студентов. Трём студентам следует направиться на кафедру информатики, чтобы взять и принести компьютер и проектор. Вычислить вероятность того, что это сделают три определённых студента.

Решение. Число возможных событий рассчитываем, используя формулу (2):

Вероятность того, что на кафедру отправятся три определённых студента:

Пример 7. Продаются 10 мобильных телефонов. Их них у 3 есть дефекты. Покупатель выбрал 2 телефона. Вычислить вероятность того, что оба выбранных телефона будут с дефектами.

Решение. Число всех равновозможных событий находим по формуле (2):

По той же формуле находим число благоприятных событию возможностей:

Искомая вероятность того, что оба выбранных телефона будут с дефектами.

Нравится нам это или нет, но наша жизнь полна всевозможных случайностей, как приятных так и не очень. Поэтому каждому из нас не помешало бы знать, как найти вероятность того или иного события. Это поможет принимать верные решения при любых обстоятельствах, которые связаны с неопределенностью. К примеру, такие знания окажутся весьма кстати при выборе вариантов инвестирования, оценке возможности выигрыша в акции или лотерее, определении реальности достижения личных целей и т. д., и т. п.

Формула теории вероятности

В принципе, изучение данной темы не занимает слишком много времени. Для того чтобы получить ответ на вопрос: "Как найти вероятность какого-либо явления?", нужно разобраться с ключевыми понятиями и запомнить основные принципы, на которых базируется расчёт. Итак, согласно статистике, исследуемые события обозначаются через A1, А2,..., An. У каждого из них есть как благоприятствующие исходы (m), так и общее количество элементарных исходов. К примеру, нас интересует, как найти вероятность того, что на верхней грани кубика окажется четное число очков. Тогда А - это бросок m - выпадение 2, 4 или 6 очков (три благоприятствующих варианта), а n - это все шесть возможных вариантов.

Сама же формула расчета выглядит следующим образом:

С одним исходом все предельно легко. А вот как найти вероятность, если события идут одно за другим? Рассмотрим такой пример: из карточной колоды (36 шт.) показывается одна карта, затем она прячется снова в колоду, и после перемешивания вытаскивается следующая. Как найти вероятность того, что хоть в одном случае была вытащена дама пик? Существует следующее правило: если рассматривается сложное событие, которое можно разделить на несколько несовместимых простых событий, то можно сначала рассчитать результат для каждого из них, а затем сложить их между собой. В нашем случае это будет выглядеть так: 1 / 36 + 1 / 36 = 1 / 18 . А как же быть тогда, когда несколько происходят одновременно? Тогда результаты умножаем! Например, вероятность того, что при одновременном подбрасывании сразу двух монет выпадут две решки, будет равна: ½ * ½ = 0.25.

Теперь возьмем еще более сложный пример. Предположим, мы попали на книжную лотерею, в которой из тридцати билетов десять являются выигрышными. Требуется определить:

  1. Вероятность того, что оба окажутся выигрышными.
  2. Хотя бы один из них принесет приз.
  3. Оба окажутся проигрышными.

Итак, рассмотрим первый случай. Его можно разбить на два события: первый билет будет счастливым, и второй также окажется счастливым. Учтем, что события зависимы, поскольку после каждого вытаскивания общее количество вариантов уменьшается. Получаем:

10 / 30 * 9 / 29 = 0,1034.

Во втором случае понадобится определить вероятность проигрышного билета и учесть, что он может быть как первым по счету, так и вторым: 10 / 30 * 20 / 29 + 20 / 29 * 10 / 30 = 0,4598.

Наконец, третий случай, когда по разыгранной лотерее даже одной книжки получить не получится: 20 / 30 * 19 / 29 = 0,4368.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то